Nonlinear prediction of chaotic time series

[1]  J. D. Powell,et al.  Radial basis function approximations to polynomials , 1989 .

[2]  J. Doyne Farmer,et al.  Exploiting Chaos to Predict the Future and Reduce Noise , 1989 .

[3]  R. Tavakol,et al.  Fluid intermittency in low dimensional deterministic systems , 1988 .

[4]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[5]  J. Cremers,et al.  Construction of Differential Equations from Experimental Data , 1987 .

[6]  G. P. King,et al.  Topological dimension and local coordinates from time series data , 1987 .

[7]  S. Orszag,et al.  Independent degrees of freedom of dynamical systems , 1987 .

[8]  A. Lapedes,et al.  Nonlinear signal processing using neural networks: Prediction and system modelling , 1987 .

[9]  L. Sirovich,et al.  Coherent structures and chaos: A model problem , 1987 .

[10]  M. J. D. Powell,et al.  Radial basis functions for multivariable interpolation: a review , 1987 .

[11]  James P. Crutchfield,et al.  Equations of Motion from a Data Series , 1987, Complex Syst..

[12]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[13]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[14]  P. Grassberger Do climatic attractors exist? , 1986, Nature.

[15]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[16]  S. Rippa,et al.  Numerical Procedures for Surface Fitting of Scattered Data by Radial Functions , 1986 .

[17]  Sawada,et al.  Measurement of the Lyapunov spectrum from a chaotic time series. , 1985, Physical review letters.

[18]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[19]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[20]  M. Barnsley,et al.  Iterated function systems and the global construction of fractals , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[21]  P. Grassberger,et al.  Dimensions and entropies of strange attractors from a fluctuating dynamics approach , 1984 .

[22]  J. Yorke,et al.  The liapunov dimension of strange attractors , 1983 .

[23]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[24]  Hung Man Tong,et al.  Threshold models in non-linear time series analysis. Lecture notes in statistics, No.21 , 1983 .

[25]  J. D. Farmer,et al.  Chaotic attractors of an infinite-dimensional dynamical system , 1982 .

[26]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[27]  M. Powell,et al.  Approximation theory and methods , 1984 .

[28]  J. D. Farmer,et al.  ON DETERMINING THE DIMENSION OF CHAOTIC FLOWS , 1981 .

[29]  F. Takens Detecting strange attractors in turbulence , 1981 .

[30]  K. Ikeda Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system , 1979 .

[31]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[32]  James Hardy Wilkinson,et al.  Linear algebra , 1971, Handbook for automatic computation.

[33]  Michael D. Geurts,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[34]  E. Lorenz Atmospheric Predictability as Revealed by Naturally Occurring Analogues , 1969 .

[35]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[36]  Dennis Gabor,et al.  A universal nonlinear filter, predictor and simulator which optimizes itself by a learning process , 1961 .