Plasmonic Near-Field Absorbers for Ultrathin Solar Cells.

If the active layer of efficient solar cells could be made 100 times thinner than in today's thin film devices, their economic competitiveness would greatly benefit. However, conventional solar cell materials do not have the optical capability to allow for such thickness reductions without a substantial loss of light absorption. To address this challenge, the use of plasmon resonances in metal nanostructures to trap light and create charge carriers in a nearby semiconductor material is an interesting opportunity. In this Perspective, recent progress with regards to ultrathin (∼10 nm) plasmonic nanocomposites is reviewed. Their optimal internal geometry for plasmon near-field induced absorption is discussed, and a zero thickness effective medium representation is used to optimize stacks including an Al back reflector for photovoltaics. This shows that high conversion efficiencies (>20%) are possible even when taking surface scattering effects and thin passivating layers inserted between the metal and semiconductor into account.

[1]  M. Hentschel,et al.  Infrared perfect absorber and its application as plasmonic sensor. , 2010, Nano letters.

[2]  Plasmon enhanced solar-to-fuel energy conversion. , 2011, Nano letters.

[3]  Correlating the photovoltaic performance of alumina modified dye-sensitized solar cells with the properties of metal-free organic sensitizers , 2012 .

[4]  A. Belcher,et al.  Highly efficient plasmon-enhanced dye-sensitized solar cells through metal@oxide core-shell nanostructure. , 2011, ACS nano.

[5]  Xiaofeng Li,et al.  Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells. , 2011, Optics express.

[6]  S. Bent,et al.  Nanoengineering and interfacial engineering of photovoltaics by atomic layer deposition. , 2011, Nanoscale.

[7]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[8]  P. Luo,et al.  Photoresponse enhancement in the near infrared wavelength range of ultrathin amorphous silicon photosensitive devices by integration of silver nanoparticles , 2009 .

[9]  Paul Mulvaney,et al.  Influence of particle-substrate interaction on localized plasmon resonances. , 2010, Nano letters.

[10]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[11]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[12]  Edward S. Barnard,et al.  Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements , 2009 .

[13]  J. Bolton,et al.  Requirements for ideal performance of photochemical and photovoltaic solar energy converters , 1990 .

[14]  Absorption enhancement in solution processed metal-semiconductor nanocomposites. , 2011, Optics express.

[15]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[16]  V. Zhdanov,et al.  Photo-induced chemical processes on metal–semiconductor–metal nanostructures , 2012 .

[17]  P. Yang,et al.  Plasmon-enhanced photocatalytic activity of iron oxide on gold nanopillars. , 2012, ACS nano.

[18]  Costas M. Soukoulis,et al.  Wide-angle perfect absorber/thermal emitter in the terahertz regime , 2008, 0807.2479.

[19]  P. Peumans,et al.  Coherent light trapping in thin-film photovoltaics , 2011 .

[20]  M. I. Alonso,et al.  Optical functions and electronic structure of CuInSe 2 , CuGaSe 2 , CuInS 2 , and CuGaS 2 , 2001 .

[21]  M. Käll,et al.  Optical response of supported gold nanodisks. , 2011, Optics express.

[22]  U. Kreibig,et al.  Interface decay channel of particle surface plasmon resonance , 2003 .

[23]  Albert Polman,et al.  Tunable light trapping for solar cells using localized surface plasmons , 2009 .

[24]  C. Hägglund,et al.  Resource efficient plasmon-based 2D-photovoltaics with reflective support. , 2010, Optics express.

[25]  Jing Wang,et al.  High performance optical absorber based on a plasmonic metamaterial , 2010 .

[26]  Carl Hägglund,et al.  Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons , 2008 .

[27]  Jung-Yong Lee,et al.  The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer. , 2010, Optics express.

[28]  Dieter Meissner,et al.  Metal cluster enhanced organic solar cells , 2000 .

[29]  Antonio Luque,et al.  Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells , 2009 .

[30]  Wolf,et al.  Ultrafast electron dynamics at Cu(111): Response of an electron gas to optical excitation. , 1996, Physical review letters.

[31]  B. Kasemo,et al.  Nanoparticle plasmonics for 2D-photovoltaics: mechanisms, optimization, and limits. , 2009, Optics express.

[32]  M. D. Dood,et al.  The perfect absorber , 2009 .

[33]  Koray Aydin,et al.  Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. , 2011, Nature communications.

[34]  M. Zeman,et al.  Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology , 1998 .

[35]  L. Partain Solar Cell Device Physics , 2010 .

[36]  R. Fante,et al.  Reflection properties of the Salisbury screen , 1988 .

[37]  F. G. D. Abajo Colloquium: Light scattering by particle and hole arrays , 2007, 0903.1671.

[38]  Sukosin Thongrattanasiri,et al.  Complete optical absorption in periodically patterned graphene. , 2012, Physical review letters.

[39]  Franz Faupel,et al.  Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic Metamaterials , 2011, Advanced materials.

[40]  Juan José Sáenz,et al.  Tuning the optical response of nanocylinder arrays: An analytical study , 2006 .

[41]  Ching-Fuh Lin,et al.  Coverage Analysis for the Core/Shell Electrode of Dye-Sensitized Solar Cells , 2010 .

[42]  Vollmer,et al.  Width of cluster plasmon resonances: Bulk dielectric functions and chemical interface damping. , 1993, Physical review. B, Condensed matter.

[43]  J. Hao,et al.  Nearly total absorption of light and heat generation by plasmonic metamaterials , 2011 .

[44]  Lechner,et al.  Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance , 2000, Physical review letters.

[45]  George C. Schatz,et al.  Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach , 2003 .

[46]  D. Bedeaux,et al.  Optical Properties of Surfaces , 2002 .

[47]  Mark I. Stockman,et al.  Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory , 2004 .

[48]  Feng Wang,et al.  General properties of local plasmons in metal nanostructures. , 2006, Physical review letters.

[49]  D. Ginger,et al.  Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. , 2010, Nano letters.

[50]  W. A. Dench,et al.  Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids , 1979 .

[51]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[52]  B. Kasemo,et al.  Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios. , 2007, The Journal of chemical physics.

[53]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[54]  B. Kasemo,et al.  Thickness dependence of plasmonic charge carrier generation in ultrathin a-Si:H layers for solar cells. , 2011, ACS nano.

[55]  J. Vlieger Reflection and transmission of light by a square non-polar lattice , 1973 .

[56]  Stephen R. Forrest,et al.  Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters , 2004 .

[57]  P. Barber Absorption and scattering of light by small particles , 1984 .

[58]  Carl Hägglund,et al.  Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons , 2008 .

[59]  Houtong Chen Interference theory of metamaterial perfect absorbers. , 2011, Optics Express.

[60]  Vladimir Bulović,et al.  Critically coupled resonators in vertical geometry using a planar mirror and a 5 nm thick absorbing film. , 2006, Optics letters.

[61]  Dennis G. Hall,et al.  Absorption enhancement in silicon‐on‐insulator waveguides using metal island films , 1996 .

[62]  Martin A. Green,et al.  Solar cell efficiency tables (Version 34) , 2009 .

[63]  Tetsu Tatsuma,et al.  Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. , 2005, Journal of the American Chemical Society.

[64]  E. Thimsen,et al.  Plasmonic solar water splitting , 2012 .

[65]  George C Schatz,et al.  Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[66]  B. Kasemo,et al.  Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics. , 2010, Nano letters.

[67]  Alessandro Salandrino,et al.  Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern , 2007 .

[68]  H. Queisser Photovoltaic conversion at reduced dimensions , 2002 .

[69]  C. Persson Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4 , 2010 .

[70]  Björn A. Sandén,et al.  Solar Solution: The next industrial revolution , 2008 .

[71]  Dieter Meissner,et al.  Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells , 2002 .

[72]  S. D. Gupta Strong-interaction-mediated critical coupling at two distinct frequencies. , 2007, Optics letters.