A CalderÓn Multiplicative Preconditioner for the Combined Field Integral Equation

A Calderon multiplicative preconditioner (CMP) for the combined field integral equation (CFIE) is developed. Just like with previously proposed Calderon-preconditioned CFIEs, a localization procedure is employed to ensure that the equation is resonance-free. The iterative solution of the linear system of equations obtained via the CMP-based discretization of the CFIE converges rapidly regardless of the discretization density and the frequency of excitation.

[1]  R. Mittra,et al.  Computational Methods for Electromagnetics , 1997 .

[2]  J. Nédélec Acoustic and electromagnetic equations , 2001 .

[3]  A. Buffa,et al.  A multiplicative Calderón preconditioner for the electric field integral equation , 2008, 2008 IEEE Antennas and Propagation Society International Symposium.

[4]  Jianming Jin,et al.  Fast solution methods in electromagnetics , 1997 .

[5]  D. Wilton,et al.  Electromagnetic scattering by surfaces of arbitrary shape , 1980 .

[6]  M. Bleszynski,et al.  AIM: Adaptive integral method for solving large‐scale electromagnetic scattering and radiation problems , 1996 .

[7]  Snorre H. Christiansen,et al.  A Preconditioner for the Electric Field Integral Equation Based on Calderon Formulas , 2002, SIAM J. Numer. Anal..

[8]  R. Kleinman,et al.  Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics , 1997 .

[9]  D. Levadoux,et al.  A new well-conditioned Integral formulation for Maxwell equations in three dimensions , 2005, IEEE Transactions on Antennas and Propagation.

[10]  Raj Mittra,et al.  CBFEM-MPI: A Parallelized Version of Characteristic Basis Finite Element Method for Extraction of 3-D Interconnect Capacitances , 2009, IEEE Transactions on Advanced Packaging.

[11]  Raj Mittra,et al.  Parallelized Characteristic Basis Finite Element Method (CBFEM-MPI) - A non-iterative domain decomposition algorithm for electromagnetic scattering problems , 2009, J. Comput. Phys..

[12]  R. Mittra,et al.  Characteristic Basis Finite Element Method (CBFEM) — A non-iterative domain decomposition finite element algorithm for solving electromagnetic scattering problems , 2008, 2008 IEEE Antennas and Propagation Society International Symposium.

[13]  Andrew J. Poggio,et al.  CHAPTER 4 – Integral Equation Solutions of Three-dimensional Scattering Problems , 1973 .

[14]  Roland W. Freund,et al.  A Transpose-Free Quasi-Minimal Residual Algorithm for Non-Hermitian Linear Systems , 1993, SIAM J. Sci. Comput..

[15]  Jiming Song,et al.  Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects , 1997 .

[16]  B. Dembart,et al.  Well-conditioned boundary integral equations for three-dimensional electromagnetic scattering , 2002 .

[17]  Snorre H. Christiansen,et al.  A dual finite element complex on the barycentric refinement , 2005, Math. Comput..

[18]  R.J. Adams,et al.  Physical and analytical properties of a stabilized electric field integral equation , 2004, IEEE Transactions on Antennas and Propagation.