A Class Of Implicit-Explicit Two-Step Runge-Kutta Methods

This work develops new implicit-explicit time integrators based on two-step Runge--Kutta methods. The class of schemes of interest is characterized by linear invariant preservation and high stage orders. Theoretical consistency, stability, and stiff convergence analyses are performed to reveal the excellent properties of these methods. The new framework offers extreme flexibility in the construction of partitioned integrators since no coupling conditions are necessary. Practical schemes of orders three, four, and six are constructed and are used to solve several test problems. Numerical results confirm the theoretical findings.

[1]  G. Russo,et al.  Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations , 2000 .

[2]  A. Prothero,et al.  On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations , 1974 .

[3]  Emil M. Constantinescu,et al.  Multirate Explicit Adams Methods for Time Integration of Conservation Laws , 2009, J. Sci. Comput..

[4]  Francis X. Giraldo,et al.  A Conservative Discontinuous Galerkin Semi-Implicit Formulation for the Navier-Stokes Equations in Nonhydrostatic Mesoscale Modeling , 2009, SIAM J. Sci. Comput..

[5]  John C. Butcher,et al.  General linear methods for ordinary differential equations , 2009, Math. Comput. Simul..

[6]  R. Renaut,et al.  Two-step Runge-Kutta methods and hyperbolic partial differential equations , 1990 .

[7]  Siegfried Wagner,et al.  AN IMPLICIT-EXPLICIT DIRICHLET-BASED FIELD PANEL METHOD FOR TRANSONIC AIRCRAFT DESIGN , 2002 .

[8]  E. Hairer Order conditions for numerical methods for partitioned ordinary differential equations , 1981 .

[9]  Emil M. Constantinescu,et al.  Multirate Timestepping Methods for Hyperbolic Conservation Laws , 2007, J. Sci. Comput..

[10]  Willem Hundsdorfer,et al.  Stability of implicit-explicit linear multistep methods , 1997 .

[11]  S. Tracogna Implementation of two-step Runge-Kutta methods for ordinary differential equations , 1996 .

[12]  Francis X. Giraldo,et al.  Hybrid Eulerian-Lagrangian Semi-Implicit Time-Integrators , 2006, Comput. Math. Appl..

[13]  K. Burrage,et al.  Non-linear stability of a general class of differential equation methods , 1980 .

[14]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[15]  Bruno Welfert,et al.  Two-Step Runge-Kutta: Theory and Practice , 2000 .

[16]  J. C. Butcher,et al.  Stability Properties for a General Class of Methods for Ordinary Differential Equations , 1981 .

[17]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[18]  Emil M. Constantinescu,et al.  Optimal Explicit Strong-Stability-Preserving General Linear Methods , 2010, SIAM J. Sci. Comput..

[19]  The Order of Convergence of General Linear Methods for Ordinary Differential Equations , 1978 .

[20]  Zdzislaw Jackiewicz,et al.  Construction of two-step Runge-Kutta methods of high order for ordinary differential equations , 2004, Numerical Algorithms.

[21]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[22]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[23]  Robert D. Skeel Analysis of Fixed-Stepsize Methods , 1976 .

[24]  Steven J. Ruuth Implicit-explicit methods for reaction-diffusion problems in pattern formation , 1995 .

[25]  John C. Butcher,et al.  On the Convergence of Numerical Solutions to Ordinary Differential Equations , 1966 .

[26]  Ernst Hairer,et al.  Multistep-multistage-multiderivative methods for ordinary differential equations , 1973, Computing.

[27]  L. M. Skvortsov Explicit two-step Runge-Kutta methods , 2010 .

[28]  J. Blom,et al.  An implicit-explicit approach for atmospheric transport-chemistry problems , 1996 .

[29]  Zdzislaw Jackiewicz,et al.  A general class of two-step Runge-Kutta methods for ordinary differential equations , 1995 .

[30]  SEBASTIANO BOSCARINO Error Analysis of IMEX Runge-Kutta Methods Derived from Differential-Algebraic Systems , 2007, SIAM J. Numer. Anal..

[31]  Vít Dolejší,et al.  Analysis of semi-implicit DGFEM for nonlinear convection–diffusion problems on nonconforming meshes ☆ , 2007 .

[32]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[33]  Willem Hundsdorfer,et al.  IMEX extensions of linear multistep methods with general monotonicity and boundedness properties , 2007, J. Comput. Phys..

[34]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[35]  Jan G. Verwer,et al.  An Implicit-Explicit Runge-Kutta-Chebyshev Scheme for Diffusion-Reaction Equations , 2004, SIAM J. Sci. Comput..

[36]  Ernst Hairer,et al.  Order Conditions for General Two-Step Runge--Kutta Methods , 1997 .