A Class Of Implicit-Explicit Two-Step Runge-Kutta Methods
暂无分享,去创建一个
[1] G. Russo,et al. Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations , 2000 .
[2] A. Prothero,et al. On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations , 1974 .
[3] Emil M. Constantinescu,et al. Multirate Explicit Adams Methods for Time Integration of Conservation Laws , 2009, J. Sci. Comput..
[4] Francis X. Giraldo,et al. A Conservative Discontinuous Galerkin Semi-Implicit Formulation for the Navier-Stokes Equations in Nonhydrostatic Mesoscale Modeling , 2009, SIAM J. Sci. Comput..
[5] John C. Butcher,et al. General linear methods for ordinary differential equations , 2009, Math. Comput. Simul..
[6] R. Renaut,et al. Two-step Runge-Kutta methods and hyperbolic partial differential equations , 1990 .
[7] Siegfried Wagner,et al. AN IMPLICIT-EXPLICIT DIRICHLET-BASED FIELD PANEL METHOD FOR TRANSONIC AIRCRAFT DESIGN , 2002 .
[8] E. Hairer. Order conditions for numerical methods for partitioned ordinary differential equations , 1981 .
[9] Emil M. Constantinescu,et al. Multirate Timestepping Methods for Hyperbolic Conservation Laws , 2007, J. Sci. Comput..
[10] Willem Hundsdorfer,et al. Stability of implicit-explicit linear multistep methods , 1997 .
[11] S. Tracogna. Implementation of two-step Runge-Kutta methods for ordinary differential equations , 1996 .
[12] Francis X. Giraldo,et al. Hybrid Eulerian-Lagrangian Semi-Implicit Time-Integrators , 2006, Comput. Math. Appl..
[13] K. Burrage,et al. Non-linear stability of a general class of differential equation methods , 1980 .
[14] M. Carpenter,et al. Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .
[15] Bruno Welfert,et al. Two-Step Runge-Kutta: Theory and Practice , 2000 .
[16] J. C. Butcher,et al. Stability Properties for a General Class of Methods for Ordinary Differential Equations , 1981 .
[17] J. Verwer,et al. Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .
[18] Emil M. Constantinescu,et al. Optimal Explicit Strong-Stability-Preserving General Linear Methods , 2010, SIAM J. Sci. Comput..
[19] The Order of Convergence of General Linear Methods for Ordinary Differential Equations , 1978 .
[20] Zdzislaw Jackiewicz,et al. Construction of two-step Runge-Kutta methods of high order for ordinary differential equations , 2004, Numerical Algorithms.
[21] Steven J. Ruuth,et al. Implicit-explicit methods for time-dependent partial differential equations , 1995 .
[22] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[23] Robert D. Skeel. Analysis of Fixed-Stepsize Methods , 1976 .
[24] Steven J. Ruuth. Implicit-explicit methods for reaction-diffusion problems in pattern formation , 1995 .
[25] John C. Butcher,et al. On the Convergence of Numerical Solutions to Ordinary Differential Equations , 1966 .
[26] Ernst Hairer,et al. Multistep-multistage-multiderivative methods for ordinary differential equations , 1973, Computing.
[27] L. M. Skvortsov. Explicit two-step Runge-Kutta methods , 2010 .
[28] J. Blom,et al. An implicit-explicit approach for atmospheric transport-chemistry problems , 1996 .
[29] Zdzislaw Jackiewicz,et al. A general class of two-step Runge-Kutta methods for ordinary differential equations , 1995 .
[30] SEBASTIANO BOSCARINO. Error Analysis of IMEX Runge-Kutta Methods Derived from Differential-Algebraic Systems , 2007, SIAM J. Numer. Anal..
[31] Vít Dolejší,et al. Analysis of semi-implicit DGFEM for nonlinear convection–diffusion problems on nonconforming meshes ☆ , 2007 .
[32] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[33] Willem Hundsdorfer,et al. IMEX extensions of linear multistep methods with general monotonicity and boundedness properties , 2007, J. Comput. Phys..
[34] Steven J. Ruuth,et al. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .
[35] Jan G. Verwer,et al. An Implicit-Explicit Runge-Kutta-Chebyshev Scheme for Diffusion-Reaction Equations , 2004, SIAM J. Sci. Comput..
[36] Ernst Hairer,et al. Order Conditions for General Two-Step Runge--Kutta Methods , 1997 .