Preisach distribution function approach to piezoelectric nonlinearity and hysteresis
暂无分享,去创建一个
[1] V. Mueller,et al. Shear response of lead zirconate titanate piezoceramics , 1998 .
[2] Mayergoyz,et al. Mathematical models of hysteresis. , 1986, Physical review letters.
[3] V. D. Kugel,et al. Behavior of soft piezoelectric ceramics under high sinusoidal electric fields , 1998 .
[4] L. Mulay. Magnetism of metals and alloys: Edited by M. Cyrot. North-Holland Publishing, Amsterdam/New York (1982), 608+ pp. Price: $74.50 , 1983 .
[5] M. Troccaz,et al. Non Linear Behavior of the Permittivity and of the Piezoelectric Strain Constant Under High Electric Field Drive , 2000 .
[6] F. Preisach. Über die magnetische Nachwirkung , 1935 .
[7] I. Mayergoyz. Superconducting hysteresis and the Preisach model , 1990 .
[8] K. Uchino,et al. Loss mechanisms in piezoelectrics: how to measure different losses separately , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[9] Hartmut Janocha,et al. Real-time compensation of hysteresis and creep in piezoelectric actuators , 2000 .
[10] Dragan Damjanovic,et al. Preisach modeling of piezoelectric nonlinearity in ferroelectric ceramics , 2001 .
[11] Vittorio Basso,et al. RANDOM FREE ENERGY MODEL FOR THE DESCRIPTION OF HYSTERESIS , 1996 .
[12] Dragan Damjanovic,et al. STRESS AND FREQUENCY DEPENDENCE OF THE DIRECT PIEZOELECTRIC EFFECT IN FERROELECTRIC CERAMICS , 1997 .