Monocular SLAM with locally planar landmarks via geometric rao-blackwellized particle filtering on Lie groups

We propose a novel geometric Rao-Blackwellized particle filtering framework for monocular SLAM with locally planar landmarks. We represent the states for the camera pose and the landmark plane normal as SE(3) and SO(3), respectively, which are both Lie groups. The measurement error is also represented as another Lie group SL(3) corresponding to the space of homography matrices. We then formulate the unscented transformation on Lie groups for optimal importance sampling and landmark estimation via unscented Kalman filter. The feasibility of our framework is demonstrated via various experiments.

[1]  Tom Drummond,et al.  Scalable Monocular SLAM , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[2]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[3]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[4]  Nando de Freitas,et al.  The Unscented Particle Filter , 2000, NIPS.

[5]  Ian D. Reid,et al.  Locally Planar Patch Features for Real-Time Structure from Motion , 2004, BMVC.

[6]  Andrew J. Davison,et al.  Real-time simultaneous localisation and mapping with a single camera , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[7]  Walterio W. Mayol-Cuevas,et al.  Discovering Higher Level Structure in Visual SLAM , 2008, IEEE Transactions on Robotics.

[8]  Kyoung Mu Lee,et al.  Visual tracking via geometric particle filtering on the affine group with optimal importance functions , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[10]  Tobias Pietzsch Planar Features for Visual SLAM , 2008, KI.

[11]  Tal Arbel,et al.  Generalizing Inverse Compositional and ESM Image Alignment , 2010, International Journal of Computer Vision.

[12]  Gregory S. Chirikjian,et al.  Error propagation on the Euclidean group with applications to manipulator kinematics , 2006, IEEE Transactions on Robotics.

[13]  Michael Werman,et al.  How to put probabilities on homographies , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Andrew Calway,et al.  Appearance Based Extraction of Planar Structure in Monocular SLAM , 2009, SCIA.

[15]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[16]  Patrick Rives,et al.  An Efficient Direct Approach to Visual SLAM , 2008, IEEE Transactions on Robotics.

[17]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[18]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[19]  Wan Kyun Chung,et al.  Unscented FastSLAM: A Robust and Efficient Solution to the SLAM Problem , 2008, IEEE Transactions on Robotics.

[20]  Selim Benhimane,et al.  Homography-based 2D Visual Tracking and Servoing , 2007, Int. J. Robotics Res..

[21]  Xiaoqin Zhang,et al.  Sequential particle swarm optimization for visual tracking , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Javier Civera,et al.  Inverse Depth Parametrization for Monocular SLAM , 2008, IEEE Transactions on Robotics.

[23]  Simon Lacroix,et al.  Using planar facets for stereovision SLAM , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[24]  Frank Chongwoo Park,et al.  Particle Filtering on the Euclidean Group , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[25]  James J. Little,et al.  A Study of the Rao-Blackwellised Particle Filter for Efficient and Accurate Vision-Based SLAM , 2006, International Journal of Computer Vision.