The limits of top-down control of visual attention.

The extent to which spatial selection is driven by the goals of the observer and by the properties of the environment is one of the major issues in the field of visual attention. Here we review recent experimental evidence from behavioral and eye movement studies suggesting that top-down control has temporal and spatial limits. More specifically, we argue that the first feedforward sweep of information is bottom-up, and that top-down control can influence selection only after the sweep is completed. In addition, top-down control can limit spatial selection through adjusting the size of attentional window, an area of visual space which receives priority in information sampling. Finally, we discuss the evidence found using brain imaging techniques for top-down control in an attempt to reconcile it with behavioral findings. We conclude by discussing theoretical implications of these results for the current models of visual selection.

[1]  Robert M. McPeek,et al.  Concurrent processing of saccades in visual search , 2000, Vision Research.

[2]  A. Treisman,et al.  Attention, Space, and Action: Studies in Cognitive Neuroscience , 2001 .

[3]  D. Meyer,et al.  Attention and Performance XIV , 1973 .

[4]  J. Theeuwes Top-down search strategies cannot override attentional capture , 2004, Psychonomic bulletin & review.

[5]  A. Dale,et al.  The Retinotopy of Visual Spatial Attention , 1998, Neuron.

[6]  Martin Eimer,et al.  Involuntary Attentional Capture is Determined by Task Set: Evidence from Event-related Brain Potentials , 2008, Journal of Cognitive Neuroscience.

[7]  R. Shepard Perceptual-cognitive universals as reflections of the world , 1994, Psychonomic bulletin & review.

[8]  R. Walker,et al.  Curved saccade trajectories: Voluntary and reflexive saccades curve away from irrelevant distractors , 2001, Experimental Brain Research.

[9]  Charles L. Folk,et al.  Do locally defined feature discontinuities capture attention? , 1994, Perception & psychophysics.

[10]  Nicholas A. Steinmetz,et al.  Top-down control of visual attention , 2010, Current Opinion in Neurobiology.

[11]  Marisa Carrasco,et al.  Temporal performance fields: visual and attentional factors , 2004, Vision Research.

[12]  S J Luck,et al.  Spatial filtering during visual search: evidence from human electrophysiology. , 1994, Journal of experimental psychology. Human perception and performance.

[13]  S. Yantis,et al.  Stimulus-driven attentional capture: evidence from equiluminant visual objects. , 1994, Journal of experimental psychology. Human perception and performance.

[14]  G. Rizzolatti,et al.  Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention , 1987, Neuropsychologia.

[15]  J. Theeuwes,et al.  Eye movement trajectories and what they tell us , 2006, Neuroscience & Biobehavioral Reviews.

[16]  J. Theeuwes,et al.  Response selection modulates visual search within and across dimensions. , 2005, Journal of experimental psychology. Human perception and performance.

[17]  J. Wolfe,et al.  What Can 1 Million Trials Tell Us About Visual Search? , 1998 .

[18]  A. Treisman Features and Objects: The Fourteenth Bartlett Memorial Lecture , 1988, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[19]  Jillian H. Fecteau,et al.  Salience, relevance, and firing: a priority map for target selection , 2006, Trends in Cognitive Sciences.

[20]  Jan Theeuwes,et al.  Capture of the eyes by relevant and irrelevant onsets , 2007, Experimental Brain Research.

[21]  S. Grossberg The Attentive Brain , 1995 .

[22]  DeLiang Wang,et al.  The role of priming in conjunctive visual search , 2002, Cognition.

[23]  P. Haggard,et al.  Time course of oculomotor inhibition revealed by saccade trajectory modulation. , 2006, Journal of neurophysiology.

[24]  A. Martinez,et al.  CHAPTER 84 – Electrophysiological and Neuroimaging Approaches to the Study of Visual Attention , 2005 .

[25]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[26]  H. Müller,et al.  Cross-trial priming in visual search for singleton conjunction targets: Role of repeated target and distractor features , 2006, Perception & psychophysics.

[27]  J. Duncan Boundary Conditions on Parallel Processing in Human Vision , 1989, Perception.

[28]  Casimir J. H. Ludwig,et al.  Stimulus-driven and goal-driven control over visual selection. , 2002, Journal of experimental psychology. Human perception and performance.

[29]  C. Olivers,et al.  On the dissociation between compound and present/absent tasks in visual search: Intertrial priming is ambiguity driven , 2006 .

[30]  J. Theeuwes,et al.  Attentional and oculomotor capture , 2001 .

[31]  S. Yantis,et al.  On the distinction between visual salience and stimulus-driven attentional capture. , 1999, Journal of experimental psychology. Human perception and performance.

[32]  H. Egeth,et al.  Overriding stimulus-driven attentional capture , 1994, Perception & psychophysics.

[33]  S. Coren,et al.  Effect of Non-Target Stimuli upon Length of Voluntary Saccades , 1972, Perceptual and motor skills.

[34]  C. Koch,et al.  A saliency-based search mechanism for overt and covert shifts of visual attention , 2000, Vision Research.

[35]  K. Kopecz,et al.  Saccadic reaction times in gap/overlap paradigms: a model based on integration of intentional and visual information on neural, dynamic fields , 1995, Vision Research.

[36]  J. Theeuwes,et al.  Cuing the dimension of a distractor: Verbal cues of target identity also benefit same-dimension distractor singletons , 2006, Psychonomic bulletin & review.

[37]  Jan Theeuwes,et al.  Parallel search for a conjunction of color and orientation: The effect of spatial proximity , 1996 .

[38]  Colin Blakemore,et al.  Vision: Coding and Efficiency , 1991 .

[39]  A. Nobre,et al.  The Large-Scale Neural Network for Spatial Attention Displays Multifunctional Overlap But Differential Asymmetry , 1999, NeuroImage.

[40]  K. Nakayama,et al.  Priming of popout: III. A short-term implicit memory system beneficial for rapid target selection , 2000 .

[41]  K. Nakayama,et al.  Attention, pattern recognition and popout in visual search , 1998 .

[42]  L. Itti Quantitative modelling of perceptual salience at human eye position , 2006 .

[43]  Andrew B. Leber,et al.  It’s under control: Top-down search strategies can override attentional capture , 2006, Psychonomic bulletin & review.

[44]  Casimir J. H. Ludwig,et al.  Target similarity affects saccade curvature away from irrelevant onsets , 2003, Experimental Brain Research.

[45]  Andrew B. Leber,et al.  Coordination of Voluntary and Stimulus-Driven Attentional Control in Human Cortex , 2005, Psychological science.

[46]  F. Ottes,et al.  Latency dependence of colour-based target vs nontarget discrimination by the saccadic system , 1985, Vision Research.

[47]  J. C. Johnston,et al.  Involuntary attentional capture by abrupt onsets , 1992, Perception & psychophysics.

[48]  Tirin Moore,et al.  Changes in Visual Receptive Fields with Microstimulation of Frontal Cortex , 2006, Neuron.

[49]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[50]  L. Zhaoping,et al.  A theory of a saliency map in primary visual cortex (V1) tested by psychophysics of colour–orientation interference in texture segmentation , 2006 .

[51]  Martin Eimer,et al.  The Roles of Feature-Specific Task Set and Bottom-Up Salience in Attentional Capture : An ERP Study , 2009 .

[52]  Jan Theeuwes,et al.  The size of an attentional window modulates attentional capture by color singletons , 2007, Psychonomic bulletin & review.

[53]  M. Eimer An event-related potential (ERP) study of transient and sustained visual attention to color and form , 1997, Biological Psychology.

[54]  A. Cohen,et al.  Intra- and cross-dimensional visual search for single-feature targets , 1999, Perception & psychophysics.

[55]  M. Turatto,et al.  Attentional capture by color without any relevant attentional set , 2001, Perception & psychophysics.

[56]  J. Theeuwes Stimulus-driven capture and attentional set: selective search for color and visual abrupt onsets. , 1994, Journal of experimental psychology. Human perception and performance.

[57]  M. Gazzaniga,et al.  Combined spatial and temporal imaging of brain activity during visual selective attention in humans , 1994, Nature.

[58]  Christian N. L. Olivers,et al.  Intertrial priming stemming from ambiguity: A new account of priming in visual search , 2006 .

[59]  M. Posner,et al.  Orienting of Attention* , 1980, The Quarterly journal of experimental psychology.

[60]  G. Rizzolatti,et al.  Spatial attention-determined modifications in saccade trajectories. , 1995, Neuroreport.

[61]  J. Theeuwes,et al.  The spatial coding of the inhibition evoked by distractors , 2007, Vision Research.

[62]  A. Treisman,et al.  Voluntary Attention Modulates fMRI Activity in Human MT–MST , 1997, Neuron.

[63]  G. Rizzolatti,et al.  Space and selective attention , 1994 .

[64]  J. Theeuwes,et al.  Electrophysiological Evidence of the Capture of Visual Attention , 2006, Journal of Cognitive Neuroscience.

[65]  M. Corbetta,et al.  Areas Involved in Encoding and Applying Directional Expectations to Moving Objects , 1999, The Journal of Neuroscience.

[66]  S. Hillyard,et al.  Spatio-temporal analysis of feature-based attention. , 2007, Cerebral cortex.

[67]  C. Bundesen,et al.  A neural theory of visual attention: bridging cognition and neurophysiology. , 2005, Psychological review.

[68]  Jan Theeuwes,et al.  Relation between saccade trajectories and spatial distractor locations. , 2005, Brain research. Cognitive brain research.

[69]  Geoffrey F Woodman,et al.  Serial deployment of attention during visual search. , 2003, Journal of experimental psychology. Human perception and performance.

[70]  J. Theeuwes Cross-dimensional perceptual selectivity , 1991, Perception & psychophysics.

[71]  P. Haggard,et al.  The control of saccade trajectories: Direction of curvature depends on prior knowledge of target location and saccade latency , 2006, Perception & psychophysics.

[72]  C. Frith,et al.  Neural Correlates of Attentional Capture in Visual Search , 2004, Journal of Cognitive Neuroscience.

[73]  S. Treue Visual attention: the where, what, how and why of saliency , 2003, Current Opinion in Neurobiology.

[74]  K. Nakayama,et al.  Priming of pop-out: I. Role of features , 1994, Memory & cognition.

[75]  H. Deubel,et al.  Effect of remote distractors on saccade programming: evidence for an extended fixation zone. , 1997, Journal of neurophysiology.

[76]  Jan Theeuwes,et al.  Prioritization by transients in visual search , 2005, Psychonomic bulletin & review.

[77]  J. Duncan,et al.  Visual search and stimulus similarity. , 1989, Psychological review.

[78]  B. Gibson,et al.  3 – Inattentional Blindness and Attentional Capture: Evidence for Attention-Based Theories of Visual Salience , 2001 .

[79]  D. E. Irwin,et al.  Our Eyes do Not Always Go Where we Want Them to Go: Capture of the Eyes by New Objects , 1998 .

[80]  Rufin VanRullen,et al.  The power of the feed-forward sweep , 2008, Advances in cognitive psychology.

[81]  J. Theeuwes,et al.  The relationship between covert and overt attention in endogenous cuing , 2007, Perception & psychophysics.

[82]  J. Theeuwes,et al.  Parallel search for a conjunction of contrast polarity and shape , 1994, Vision Research.

[83]  J. C. Johnston,et al.  Involuntary covert orienting is contingent on attentional control settings. , 1992, Journal of experimental psychology. Human perception and performance.

[84]  T. Moore,et al.  Microstimulation of the frontal eye field and its effects on covert spatial attention. , 2004, Journal of neurophysiology.

[85]  J. Theeuwes,et al.  Detecting the presence of a singleton involves focal attention , 2008, Psychonomic bulletin & review.

[86]  D. Somers,et al.  Functional MRI reveals spatially specific attentional modulation in human primary visual cortex. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[87]  C Bundesen,et al.  A computational theory of visual attention. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[88]  G. Humphreys,et al.  Visual marking: prioritizing selection for new objects by top-down attentional inhibition of old objects. , 1997, Psychological review.

[89]  M. Corbetta,et al.  Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[90]  C. Bundesen A theory of visual attention. , 1990, Psychological review.

[91]  Jan Theeuwes,et al.  SEARCH FOR A CONJUNCTIVELY DEFINED TARGET CAN BE SELECTIVELY LIMITED TO A COLOR-DEFINED SUBSET OF ELEMENTS , 1995 .

[92]  J. Hoffman,et al.  The role of visual attention in saccadic eye movements , 1995, Perception & psychophysics.

[93]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[94]  J. Theeuwes,et al.  Attentional capture modulates perceptual sensitivity , 2004, Psychonomic bulletin & review.

[95]  C. Eriksen,et al.  Visual attention within and around the field of focal attention: A zoom lens model , 1986, Perception & psychophysics.

[96]  Ken Nakayama,et al.  Serial and parallel processing of visual feature conjunctions , 1986, Nature.

[97]  J. Theeuwes,et al.  The role of stimulus-driven and goal-driven control in saccadic visual selection. , 2004, Journal of experimental psychology. Human perception and performance.

[98]  B. Dosher,et al.  The role of attention in the programming of saccades , 1995, Vision Research.

[99]  Raja Parasuraman,et al.  Varieties of attention , 1984 .

[100]  B Giesbrecht,et al.  Neural mechanisms of top-down control during spatial and feature attention , 2003, NeuroImage.

[101]  Z Li,et al.  Contextual influences in V1 as a basis for pop out and asymmetry in visual search. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[102]  H. Egeth,et al.  Searching for conjunctively defined targets. , 1984, Journal of experimental psychology. Human perception and performance.

[103]  D. Broadbent Perception and communication , 1958 .

[104]  C. Bruce,et al.  Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. , 1985, Journal of neurophysiology.

[105]  N. Lavie,et al.  On the Efficiency of Visual Selective Attention: Efficient Visual Search Leads to Inefficient Distractor Rejection , 1997 .

[106]  Jan Theeuwes,et al.  The role of cueing in attentional capture , 2008 .

[107]  Leslie G. Ungerleider,et al.  Selective attention to face identity and color studied with f MRI , 1997, Human brain mapping.

[108]  S. Yantis,et al.  Uniqueness of abrupt visual onset in capturing attention , 1988, Perception & psychophysics.

[109]  E. Van der Burg,et al.  The role of spatial and nonspatial information in visual selection. , 2007, Journal of experimental psychology. Human perception and performance.

[110]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[111]  S. Yantis,et al.  Abrupt visual onsets and selective attention: voluntary versus automatic allocation. , 1990, Journal of experimental psychology. Human perception and performance.

[112]  S. Luck,et al.  Spatio‐temporal dynamics of attention to color: Evidence from human electrophysiology , 1998, Human brain mapping.

[113]  David E. Irwin,et al.  Influence of attentional capture on oculomotor control. , 1999, Journal of experimental psychology. Human perception and performance.

[114]  D. Simons,et al.  Do New Objects Capture Attention? , 2005, Psychological science.

[115]  G. Rizzolatti,et al.  Spatial attention and eye movements , 2004, Experimental Brain Research.

[116]  Wieske van Zoest,et al.  The effects of salience on saccadic target selection , 2005 .

[117]  Martin Eimer,et al.  Attentional capture by visual singletons is mediated by top-down task set: new evidence from the N2pc component. , 2008, Psychophysiology.

[118]  Ken Nakayama,et al.  Attentional requirements in a ‘preattentive’ feature search task , 1997, Nature.

[119]  Junying Yuan,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2022 .

[120]  M. Corbetta,et al.  An Event-Related Functional Magnetic Resonance Imaging Study of Voluntary and Stimulus-Driven Orienting of Attention , 2005, The Journal of Neuroscience.

[121]  Susan L. Franzel,et al.  Guided search: an alternative to the feature integration model for visual search. , 1989, Journal of experimental psychology. Human perception and performance.

[122]  J. Theeuwes,et al.  Top-down influences make saccades deviate away: the case of endogenous cues. , 2007, Acta psychologica.

[123]  Jan Theeuwes,et al.  Attentional set interacts with perceptual load in visual search , 2004, Psychonomic bulletin & review.

[124]  I. THE ATTENTION SYSTEM OF THE HUMAN BRAIN , 2002 .

[125]  J. Theeuwes Perceptual selectivity for color and form , 1992, Perception & psychophysics.

[126]  Joseph Krummenacher,et al.  Dimension‐specific intertrial facilitation in visual search for pop‐out targets: Evidence for a top‐down modulable visual short‐term memory effect , 2004 .

[127]  Donald Broadbent,et al.  In defence of empirical psychology , 1973 .

[128]  S. Hochstein,et al.  View from the Top Hierarchies and Reverse Hierarchies in the Visual System , 2002, Neuron.

[129]  J. Theeuwes,et al.  Parallel Search for a Conjunction of Shape and Contrast Polarity , 1994 .

[130]  Jan Theeuwes,et al.  Endogenous and exogenous attention shifts are mediated by the same large-scale neural network , 2004, NeuroImage.

[131]  B. Gibson,et al.  Attraction, Distraction and Action: Multiple Perspectives on Attentional Capture. Advances in Psychology , 2001 .

[132]  J. Theeuwes,et al.  Programming of endogenous and exogenous saccades: evidence for a competitive integration model. , 2002, Journal of experimental psychology. Human perception and performance.

[133]  R. Walker,et al.  Multisensory interactions in saccade target selection: Curved saccade trajectories , 2001, Experimental Brain Research.

[134]  G. Mangun,et al.  The neural mechanisms of top-down attentional control , 2000, Nature Neuroscience.

[135]  J. Theeuwes,et al.  On the time course of top-down and bottom-up control of visual attention , 2000 .

[136]  V. Lamme,et al.  The distinct modes of vision offered by feedforward and recurrent processing , 2000, Trends in Neurosciences.

[137]  J. Wijnen,et al.  Response inhibition in motor and oculomotor conflict tasks: Different mechanisms, different dynamics? , 2007, Brain and Cognition.

[138]  E DITORS,et al.  Who and what. , 1975, Pediatrics.

[139]  Margot J. Taylor Non-spatial attentional effects on P1 , 2002, Clinical Neurophysiology.

[140]  J. Theeuwes,et al.  The influence of attending to multiple locations on eye movements , 2005, Vision Research.

[141]  G. Boynton,et al.  Global effects of feature-based attention in human visual cortex , 2002, Nature Neuroscience.

[142]  G. Rizzolatti,et al.  Orienting of attention and eye movements , 2004, Experimental Brain Research.

[143]  J. Theeuwes,et al.  Visual search for featural singletons: No top-down modulation, only bottom-up priming , 2006 .

[144]  S. Hillyard,et al.  Selective attention to the color and direction of moving stimuli: Electrophysiological correlates of hierarchical feature selection , 1996, Perception & psychophysics.

[145]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[146]  H. J. Muller,et al.  Visual search for singleton feature targets across dimensions: Stimulus- and expectancy-driven effects in dimensional weighting. , 2003, Journal of experimental psychology. Human perception and performance.

[147]  R. Klein,et al.  A Model of Saccade Initiation Based on the Competitive Integration of Exogenous and Endogenous Signals in the Superior Colliculus , 2001, Journal of Cognitive Neuroscience.

[148]  J. Theeuwes,et al.  Attentional and oculomotor capture with static singletons , 2003, Perception & psychophysics.

[149]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[150]  C. Blakemore,et al.  Vision: The iconic bottleneck and the tenuous link between early visual processing and perception , 1990 .

[151]  John K. Tsotsos,et al.  Neurobiology of Attention , 2005 .

[152]  H. Nothdurft,et al.  Salience from feature contrast: temporal properties of saliency mechanisms , 2000, Vision Research.

[153]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[154]  E. DeYoe,et al.  Graded effects of spatial and featural attention on human area MT and associated motion processing areas. , 1997, Journal of neurophysiology.

[155]  Karl J. Friston,et al.  The physiological basis of attentional modulation in extrastriate visual areas , 1999, Nature Neuroscience.

[156]  M. Corbetta,et al.  Quantitative analysis of attention and detection signals during visual search. , 2003, Journal of neurophysiology.

[157]  Jennifer M. Groh,et al.  Predicting perception from population codes , 2000, Nature Neuroscience.

[158]  S. Luck,et al.  Bridging the Gap between Monkey Neurophysiology and Human Perception: An Ambiguity Resolution Theory of Visual Selective Attention , 1997, Cognitive Psychology.

[159]  E. DeYoe,et al.  A physiological correlate of the 'spotlight' of visual attention , 1999, Nature Neuroscience.

[160]  H J Müller,et al.  Visual search for singleton feature targets within and across feature dimensions , 1995, Perception & psychophysics.

[161]  B Julesz,et al.  "Where" and "what" in vision. , 1985, Science.