Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth

[1]  Fedor V. Fomin,et al.  Efficient Computation of Representative Sets with Applications in Parameterized and Exact Algorithms , 2013, SODA.

[2]  Jianer Chen,et al.  On Feedback Vertex Set: New Measure and New Structures , 2010, Algorithmica.

[3]  Stefan Fafianie,et al.  Speeding Up Dynamic Programming with Representative Sets - An Experimental Evaluation of Algorithms for Steiner Tree on Tree Decompositions , 2013, IPEC.

[4]  Michal Pilipczuk,et al.  An O(c^k n) 5-Approximation Algorithm for Treewidth , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[5]  Stefan Kratsch,et al.  Fast Hamiltonicity Checking Via Bases of Perfect Matchings , 2012, J. ACM.

[6]  László Lovász,et al.  Large Networks and Graph Limits , 2012, Colloquium Publications.

[7]  Stefan Kratsch,et al.  Solving weighted and counting variants of connectivity problems parameterized by treewidth deterministically in single exponential time , 2012, ArXiv.

[8]  Virginia Vassilevska Williams,et al.  Multiplying matrices faster than coppersmith-winograd , 2012, STOC '12.

[9]  Andreas Björklund,et al.  Shortest cycle through specified elements , 2012, SODA.

[10]  Stefan Kratsch,et al.  Representative Sets and Irrelevant Vertices: New Tools for Kernelization , 2011, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[11]  Mika Göös,et al.  Locally checkable proofs , 2011, PODC '11.

[12]  Michal Pilipczuk,et al.  Problems Parameterized by Treewidth Tractable in Single Exponential Time: A Logical Approach , 2011, MFCS.

[13]  Michal Pilipczuk,et al.  Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[14]  Dániel Marx,et al.  Known algorithms on graphs of bounded treewidth are probably optimal , 2010, SODA '11.

[15]  Andreas Björklund,et al.  Determinant Sums for Undirected Hamiltonicity , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[16]  Fedor V. Fomin,et al.  Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions , 2010, Algorithmica.

[17]  Jan Arne Telle,et al.  Boolean-width of graphs , 2009, Theor. Comput. Sci..

[18]  Ryan Williams,et al.  LIMITS and Applications of Group Algebras for Parameterized Problems , 2009, ACM Trans. Algorithms.

[19]  Fenghui Zhang,et al.  Randomized Divide-and-Conquer: Improved Path, Matching, and Packing Algorithms , 2009 .

[20]  Ryan Williams,et al.  Finding paths of length k in O*(2k) time , 2008, Inf. Process. Lett..

[21]  Andreas Björklund,et al.  Trimmed Moebius Inversion and Graphs of Bounded Degree , 2008, Theory of Computing Systems.

[22]  B. Mohar,et al.  Graph minors XXIII. Nash-Williams' immersion conjecture , 2010, J. Comb. Theory B.

[23]  Ioannis Koutis,et al.  Faster Algebraic Algorithms for Path and Packing Problems , 2008, ICALP.

[24]  Arie M. C. A. Koster,et al.  Combinatorial Optimization on Graphs of Bounded Treewidth , 2008, Comput. J..

[25]  Dimitrios M. Thilikos,et al.  Catalan structures and dynamic programming in H-minor-free graphs , 2008, SODA '08.

[26]  Heidi Gebauer On the Number of Hamilton Cycles in Bounded Degree Graphs , 2008, ANALCO.

[27]  Jianer Chen,et al.  Improved algorithms for feedback vertex set problems , 2007, J. Comput. Syst. Sci..

[28]  Erik D. Demaine,et al.  The Bidimensionality Theory and Its Algorithmic Applications , 2008, Comput. J..

[29]  Fedor V. Fomin,et al.  On Two Techniques of Combining Branching and Treewidth , 2009, Algorithmica.

[30]  Dimitrios M. Thilikos,et al.  Invitation to fixed-parameter algorithms , 2007, Comput. Sci. Rev..

[31]  Kazuo Iwama,et al.  An Improved Exact Algorithm for Cubic Graph TSP , 2007, COCOON.

[32]  Hans L. Bodlaender,et al.  Treewidth: Structure and Algorithms , 2007, SIROCCO.

[33]  David Eppstein,et al.  The Traveling Salesman Problem for Cubic Graphs , 2003, J. Graph Algorithms Appl..

[34]  Dániel Marx,et al.  A parameterized view on matroid optimization problems , 2009, Theor. Comput. Sci..

[35]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[36]  Algorithmic graph minor theory: Decomposition, approximation, and coloring , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[37]  Éva Tardos,et al.  Algorithm design , 2005 .

[38]  Arie M. C. A. Koster,et al.  Branch and Tree Decomposition Techniques for Discrete Optimization , 2005 .

[39]  Dimitrios M. Thilikos,et al.  A Simple and Fast Approach for Solving Problems on Planar Graphs , 2004, STACS.

[40]  Paul D. Seymour,et al.  Tour Merging via Branch-Decomposition , 2003, INFORMS J. Comput..

[41]  M. Aigner,et al.  Proofs from "The Book" , 2001 .

[42]  Jeffrey D. Ullman,et al.  Introduction to automata theory, languages, and computation, 2nd edition , 2001, SIGA.

[43]  Martin Aigner,et al.  Proofs from THE BOOK , 1998 .

[44]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[45]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[46]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[47]  Mihalis Yannakakis,et al.  On Limited Nondeterminism and the Complexity of the V-C Dimension , 1996, J. Comput. Syst. Sci..

[48]  Ran Raz,et al.  On the "log rank"-conjecture in communication complexity , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[49]  Michael E. Saks,et al.  Communication Complexity and Combinatorial Lattice Theory , 1993, J. Comput. Syst. Sci..

[50]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[51]  Hans L. Bodlaender,et al.  On Linear Time Minor Tests with Depth-First Search , 1993, J. Algorithms.

[52]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[53]  Stefan Arnborg,et al.  Linear time algorithms for NP-hard problems restricted to partial k-trees , 1989, Discret. Appl. Math..

[54]  Michael R. Fellows,et al.  On search decision and the efficiency of polynomial-time algorithms , 1989, STOC '89.

[55]  Vijay V. Vazirani,et al.  Matching is as easy as matrix inversion , 1987, STOC.

[56]  B. Monien How to Find Long Paths Efficiently , 1985 .

[57]  Paul D. Seymour,et al.  Graph minors. III. Planar tree-width , 1984, J. Comb. Theory B.

[58]  László Lovász,et al.  On determinants, matchings, and random algorithms , 1979, FCT.

[59]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[60]  Mam Riess Jones Color Coding , 1962, Human factors.