A new combined stable and dispersion relation preserving compact scheme for non-periodic problems

A new compact scheme is presented for computing wave propagation problems and Navier-Stokes equation. A combined compact difference scheme is developed for non-periodic problems (called NCCD henceforth) that simultaneously evaluates first and second derivatives, improving an existing combined compact difference (CCD) scheme. Following the methodologies in Sengupta et al. [T.K. Sengupta, S.K. Sircar, A. Dipankar, High accuracy schemes for DNS and acoustics, J. Sci. Comput. 26 (2) (2006) 151-193], stability and dispersion relation preservation (DRP) property analysis is performed here for general CCD schemes for the first time, emphasizing their utility in uni- and bi-directional wave propagation problems - that is relevant to acoustic wave propagation problems. We highlight: (a) specific points in parameter space those give rise to least phase and dispersion errors for non-periodic wave problems; (b) the solution error of CCD/NCCD schemes in solving Stommel Ocean model (an elliptic p.d.e.) and (c) the effectiveness of the NCCD scheme in solving Navier-Stokes equation for the benchmark lid-driven cavity problem at high Reynolds numbers, showing that the present method is capable of providing very accurate solution using far fewer points as compared to existing solutions in the literature.

[1]  David W. Zingg,et al.  Comparison of High-Accuracy Finite-Difference Methods for Linear Wave Propagation , 2000, SIAM J. Sci. Comput..

[2]  Krishnan Mahesh,et al.  High order finite difference schemes with good spectral resolution , 1997 .

[3]  J. Bowles,et al.  Fourier Analysis of Numerical Approximations of Hyperbolic Equations , 1987 .

[4]  David W. Zingg,et al.  High-Accuracy Finite-Difference Schemes for Linear Wave Propagation , 1996, SIAM J. Sci. Comput..

[5]  H. Kreiss,et al.  Comparison of accurate methods for the integration of hyperbolic equations , 1972 .

[6]  Tapan K. Sengupta,et al.  Symmetrized compact scheme for receptivity study of 2D transitional channel flow , 2006, J. Comput. Phys..

[7]  D. Durran Numerical methods for wave equations in geophysical fluid dynamics , 1999 .

[8]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[9]  Ch. Hirsch,et al.  Fundamentals Of Computational Fluid Dynamics , 2016 .

[10]  M. Pryce,et al.  Wave Propagation and Group Velocity , 1961, Nature.

[11]  J.,et al.  Numerical Integration of the Barotropic Vorticity Equation , 1950 .

[12]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[13]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[14]  P. Chu,et al.  A Three-Point Combined Compact Difference Scheme , 1998 .

[15]  Feng He,et al.  A new family of high-order compact upwind difference schemes with good spectral resolution , 2007, J. Comput. Phys..

[16]  Yu. I. Shokin,et al.  The Method of Differential Approximation , 1983 .

[17]  T. K. Sengupta,et al.  Error dynamics: Beyond von Neumann analysis , 2007, J. Comput. Phys..

[18]  C. Bruneau,et al.  The 2D lid-driven cavity problem revisited , 2006 .

[19]  J. Crank,et al.  A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  P. Roache Fundamentals of computational fluid dynamics , 1998 .

[21]  M. Sahin,et al.  A novel fully implicit finite volume method applied to the lid‐driven cavity problem—Part I: High Reynolds number flow calculations , 2003 .

[22]  R. F. Warming,et al.  The modified equation approach to the stability and accuracy analysis of finite-difference methods , 1974 .

[23]  A modified equation for dispersive difference schemes , 1995 .

[24]  Yih-Ferng Peng,et al.  Transition in a 2-D lid-driven cavity flow , 2003 .

[25]  Jiten C. Kalita,et al.  A fourth-order accurate compact scheme for the solution of steady Navier–Stokes equations on non-uniform grids , 2008 .

[26]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[27]  Tapan K. Sengupta,et al.  High Accuracy Schemes for DNS and Acoustics , 2006, J. Sci. Comput..

[28]  X. L. Niu,et al.  A new way for constructing high accuracy shock-capturing generalized compact difference schemes , 2003 .

[29]  Tapan K. Sengupta,et al.  Analysis of central and upwind compact schemes , 2003 .

[30]  L. Trefethen Group velocity in finite difference schemes , 1981 .

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  O. Botella,et al.  BENCHMARK SPECTRAL RESULTS ON THE LID-DRIVEN CAVITY FLOW , 1998 .

[33]  David F. Griffiths,et al.  On the scope of the method of modified equations , 1986 .