High-performance 1200-nm InGaAs and 1300-nm InGaAsN quantum-well lasers by metalorganic chemical vapor deposition

In this paper, we present the characteristics of high-performance strain-compensated MOCVD-grown 1200-nm InGaAs and 1300-nm InGaAsN quantum-well (QW) lasers using AsH/sub 3/ and U-Dimethylhydrazine as the group V precursors. The design of the InGaAsN QW active region utilizes an In-content of approximately 40%, which requires only approximately 0.5% N-content to realize emission wavelengths up to 1315-nm. Threshold current densities of only 65-90 A/cm/sup 2/ were realized for InGaAs QW lasers, with emission wavelength of 1170-1233 nm. Room-temperature threshold and transparency current densities of 210 and 75-80 A/cm/sup 2/, respectively, have been realized for InGaAsN QW lasers with emission wavelength of 1300-nm. Despite the utilization of the highly-strained InGaAsN QW, double-QW lasers have been realized with excellent lasing performance.

[1]  Nelson Tansu,et al.  High-performance and high-temperature continuous-wave-operation 1300 nm InGaAsN quantum well lasers by organometallic vapor phase epitaxy , 2003 .

[2]  P. Dapkus,et al.  1.2-μm GaAsP/InGaAs strain compensated single-quantum-well diode laser on GaAs using metal-organic chemical vapor deposition , 1999, IEEE Photonics Technology Letters.

[3]  Stanko Tomić,et al.  A quantitative study of radiative, Auger, and defect related recombination processes in 1.3-/spl mu/m GaInNAs-based quantum-well lasers , 2002 .

[4]  Peter Blood,et al.  Optical mode loss and gain of multiple layer quantum dot lasers , 2001, CLEO 2001.

[5]  Nelson Tansu,et al.  Low-threshold-current-density 1300-nm dilute-nitride quantum well lasers , 2002 .

[6]  Kenichi Iga,et al.  Lasing Characteristics of 1.2 µm Highly Strained GaInAs/GaAs Quantum Well Lasers , 2001 .

[7]  L. Mawst,et al.  High-performance strain-compensated InGaAs-GaAsP-GaAs (/spl lambda/=1.17 μm) quantum well diode lasers , 2001, IEEE Photonics Technology Letters.

[8]  Kent D. Choquette,et al.  Room temperature continuous wave InGaAsN quantum well vertical cavity lasers emitting at 1.3 um , 2000 .

[9]  L.J. Mawst,et al.  Temperature sensitivity of 1300-nm InGaAsN quantum-well lasers , 2002, IEEE Photonics Technology Letters.

[10]  Kouji Nakahara,et al.  GaInNAs: a novel material for long-wavelength semiconductor lasers , 1997 .

[11]  M. Pessa,et al.  1.32-μm GaInNAs-GaAs laser with a low threshold current density , 2002, IEEE Photonics Technology Letters.

[12]  Daniil A. Livshits,et al.  8 W continuous wave operation of InGaAsN lasers at 1.3 [micro sign]m , 2000 .

[13]  S. Corzine,et al.  Low threshold 1.2 μm InGaAs quantum well lasers grown under low As/III ratio , 2002 .

[14]  Wolfgang Stolz,et al.  Reduced threshold current densities of (GaIn)(NAs)/GaAs single quantum well lasers for emission wavelengths in the range 1.28-1.38 /spl mu/m , 1999 .

[15]  Nelson Tansu,et al.  Experimental evidence of carrier leakage in InGaAsN quantum-well lasers , 2003 .

[16]  C. L. Reynolds,et al.  Role of p-doping profile and regrowth on the static characteristics of 1.3-/spl mu/m MQW InGaAsP-InP lasers: experiment and modeling , 1999 .

[17]  M. Weyers,et al.  12 W continuous-wave diode lasers at 1120 nm with InGaAs quantum wells , 2001 .

[18]  Nelson Tansu,et al.  Improved photoluminescence of InGaAsN-(In)GaAsP quantum well by organometallic vapor phase epitaxy using growth pause annealing , 2003 .

[19]  Scott W. Corzine,et al.  Temperature analysis and characteristics of highly strained InGaAs-GaAsP-GaAs (/spl lambda/ > 1.17 /spl mu/m) quantum-well lasers , 2002 .

[20]  Shunichi Sato,et al.  Low Threshold and High Characteristic Temperature 1.3 µm Range GaInNAs Lasers Grown by Metalorganic Chemical Vapor Deposition , 2000 .

[21]  J.S. Harris,et al.  Tunable long-wavelength vertical-cavity lasers: the engine of next generation optical networks? , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[22]  J.S. Harris,et al.  Multiple-quantum-well GaInNAs-GaNAs ridge-waveguide laser diodes operating out to 1.4 /spl mu/m , 2002, IEEE Photonics Technology Letters.

[23]  A. Stintz,et al.  Low-threshold current density 1.3-μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure , 2000, IEEE Photonics Technology Letters.

[24]  S.R. Forrest,et al.  High T/sub 0/ long-wavelength InGaAsN quantum-well lasers grown by GSMBE using a solid arsenic source , 2002, IEEE Photonics Technology Letters.

[25]  Dieter Bimberg,et al.  Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers , 2001 .

[26]  T. Jouhti,et al.  Low-threshold-current 1.32-μm GaInNAs/GaAs single-quantum-well lasers grown by molecular-beam epitaxy , 2001 .

[27]  L. Mawst,et al.  The role of hole leakage in 1300-nm InGaAsN quantum-well lasers , 2003 .

[28]  Richard Schatz,et al.  Properties of highly strained InGaAs/GaAs quantum wells for 1.2-μm laser diodes , 2002 .

[29]  L. Mawst,et al.  Low-threshold strain-compensated InGaAs(N) (/spl lambda/ = 1.19-1.31 μm) quantum-well lasers , 2002, IEEE Photonics Technology Letters.

[30]  F. Koyama,et al.  High temperature characteristics of highly strained 1.2 /spl mu/m InGaAs/GaAs quantum well lasers , 1999, Fifth Asia-Pacific Conference on ... and Fourth Optoelectronics and Communications Conference on Communications,.

[31]  Shunichi Sato,et al.  1.21 µm Continuous-Wave Operation of Highly Strained GaInAs Quantum Well Lasers on GaAs Substrates , 1999 .

[32]  Kenichi Iga,et al.  Lasing Characteristics of Low-Threshold GaInNAs Lasers Grown by Metalorganic Chemical Vapor Deposition , 2001 .