Quantitative food webs and invertebrate assemblages of a large River: a spatiotemporal approach in floodplain shallow lakes

To test the hypothesis that the hydrological regime of large Rivers affects the structure of invertebrate communities and food webs in floodplain lakes, we studied invertebrate assemblages and stomach contents of fish and decapods in two shallow lakes in the Parana River floodplain, Argentina, with different connectivity (indirect and permanent, IPC; direct and temporal, DTC) to the fluvial system over three hydroperiods (flooding, transition, drought). Invertebrate assemblages exhibited temporal variation, with higher dissimilarity during the drought phase. However, zooplanktonic and pleustonic attributes varied spatiotemporally, and were better explained by other environmental variables. The food webs in the two lakes differed, with higher connectance and fewer predators in the DTC Lake. In general, the use of trophic resources by fish and decapods reflected the local and abundant resources in the system. The persistence of communities in floodplain lakes with temporary connectivity to the river may relate to the foraging decisions of consumers to buffer environmental fluctuations. The consumption of abundant resources highlighted the importance of autochthonous inputs into floodplain lakes. However, the variation in food supply as a key factor governing food-web structure and stability should be further investigated.

[1]  Philip H. Warren,et al.  Spatial and temporal variation in the structure of a freshwater food web , 1989 .

[2]  S. Thomaz,et al.  Floods increase similarity among aquatic habitats in river-floodplain systems , 2007, Hydrobiologia.

[3]  Verónica Williner,et al.  Size Selective Predation on an Invasive Bivalve, Limnoperna Fortunei (Mytilidae), by a Freshwater Crab, Zilchiopsis collastinensis (Trichodactylidae) , 2012 .

[4]  Guy Woodward,et al.  Back to the future: using palaeolimnology to infer long-term changes in shallow lake food webs , 2010 .

[5]  J. Paggi,et al.  Feeding ecology of Macrobrachium borelli (Nobili) (Decapoda: Palaemonidae) in the flood valley of the River Paraná, Argentina , 2004, Hydrobiologia.

[6]  G. Polis,et al.  Complex Trophic Interactions in Deserts: An Empirical Critique of Food-Web Theory , 1991, The American Naturalist.

[7]  Joel E. Cohen,et al.  Food web patterns and their consequences , 1991, Nature.

[8]  R. Carignan,et al.  Macroinvertebrates on Eichhornia crassipes roots in two lakes of the Paraná River floodplain , 1997, Hydrobiologia.

[9]  D. Dudgeon,et al.  Foodweb structure in a tropical Asian forest stream , 2004, Journal of the North American Benthological Society.

[10]  Jean-Pierre Gabriel,et al.  Complexity in quantitative food webs. , 2009, Ecology.

[11]  M. Marchese,et al.  Benthic invertebrate assemblages and functional feeding groups in the Paraná River floodplain (Argentina) , 2008 .

[12]  J. J. Neiff IDEAS PARA LA INTERPRETACION ECOLOGICA DEL PARANA , 1990 .

[13]  Robert K. Colwell,et al.  Estimating terrestrial biodiversity through extrapolation. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[14]  K. Winemiller Spatial and Temporal Variation in Tropical Fish Trophic Networks , 1990 .

[15]  K. Winemiller,et al.  Landscape-Scale Hydrologic Characteristics Differentiate Patterns of Carbon Flow in Large-River Food Webs , 2007, Ecosystems.

[16]  J. Neiff,et al.  Litterfall, leaf decomposition and litter colonization of Tessaria integrifolia (compositae) in the Parana river floodplain , 1990, Hydrobiologia.

[17]  E. Jeppesen,et al.  Meta-analysis Shows a Consistent and Strong Latitudinal Pattern in Fish Omnivory Across Ecosystems , 2012, Ecosystems.

[18]  Mário Almeida-Neto,et al.  A straightforward computational approach for measuring nestedness using quantitative matrices , 2011, Environ. Model. Softw..

[19]  M. Delong,et al.  Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers , 2002 .

[20]  Marti J. Anderson,et al.  A new method for non-parametric multivariate analysis of variance in ecology , 2001 .

[21]  G. Polis,et al.  THE ECOLOGY AND EVOLUTION OF INTRAGUILD PREDATION: Potential Competitors That Eat Each Other , 1989 .

[22]  Robert K. Colwell,et al.  Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness , 2001 .

[23]  C. Lorenzen,et al.  DETERMINATION OF CHLOROPHYLL AND PHEO‐PIGMENTS: SPECTROPHOTOMETRIC EQUATIONS1 , 1967 .

[24]  M. Marchese,et al.  Benthic invertebrate assemblages and species diversity patterns of the Upper Paraguay River , 2005 .

[25]  J. J. Neiff,et al.  RIQUEZA DE ESPECIES Y SIMILARIDAD DE LOS INVERTEBRADOS QUE VIVEN EN PLANTAS FLOTANTES DE LA PLANICIE DE INUNDACIÓN DEL RÍO PARANÁ (ARGENTINA) , 2006 .

[26]  K. Lips,et al.  Energy flow and the trophic basis of macroinvertebrate and amphibian production in a neotropical stream food web , 2013 .

[27]  O. Oliveros,et al.  Peces del río Paraná Medio Predadores de una Especie Invasora: Limnoperna Fortunei (Bivalvia, Mytilidae) , 2005 .

[28]  Craig Loehle,et al.  Are Food Webs Randomly Connected , 1991 .

[29]  Owen L. Petchey,et al.  Foraging biology predicts food web complexity , 2006, Proceedings of the National Academy of Sciences.

[30]  Ø. Hammer,et al.  PAST: PALEONTOLOGICAL STATISTICAL SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS , 2001 .

[31]  R. Tollrian,et al.  Individual swimming behavior of Daphnia: effects of food, light and container size in four clones , 1997 .

[32]  Colin R. Townsend,et al.  The Effect of Seasonal Variation on the Community Structure and Food-Web Attributes of Two Streams: Implications for Food-Web Science , 1999 .

[33]  Werner Ulrich,et al.  A consumer's guide to nestedness analysis , 2009 .

[34]  P. Collins,et al.  The mark–recapture method applied to population estimates of a freshwater crab on an alluvial plain , 2013 .

[35]  R. Solé,et al.  Topological properties of food webs: from real data to community assembly models Oikos 102 , 2003 .

[36]  N. S. Hahn,et al.  Feeding patterns in five predatory fishes of the high Paranà River floodplain (PR, Brazil) , 1997 .

[37]  A. Covich,et al.  Effects of an omnivorous crayfish (Orconectes rusticus) on a freshwater littoral food web , 1994 .

[38]  Nico Blüthgen,et al.  Why network analysis is often disconnected from community ecology: A critique and an ecologist's guide , 2010 .

[39]  A. Covich,et al.  Effects of omnivorous shrimp in a montane tropical stream: sediment removal, disturbance of sessile invertebrates and enhancement of understory algal biomass , 1993, Oecologia.

[40]  S. D. Paggi Composition and seasonality of planktonic rotifers in limnetic and littoral regions of a floodplain lake (Parana river system) , 1993 .

[41]  O. Oliveros,et al.  Ecologia trofica de hoplias malabaricus malabaricus (pisces , erythrinidae) , 2005 .

[42]  K. Winemiller Interplay Between Scale, Resolution, Life History and Food Web Properties , 2007 .

[43]  Louis-Félix Bersier,et al.  QUANTITATIVE DESCRIPTORS OF FOOD-WEB MATRICES , 2002 .

[44]  A. Arthington,et al.  Basic Principles and Ecological Consequences of Altered Flow Regimes for Aquatic Biodiversity , 2002, Environmental management.

[45]  David B. Jepsen,et al.  Effects of seasonality and fish movement on tropical river food webs , 1998 .

[46]  T. Hamazaki,et al.  THE ROLE OF OMNIVORY IN A NEOTROPICAL STREAM: SEPARATING DIURNAL AND NOCTURNAL EFFECTS , 1998 .

[47]  B. Vondracek,et al.  Top-down control in a detritus-based food web: fish, shredders, and leaf breakdown , 2002, Oecologia.

[48]  G. Woodward,et al.  Freshwater food webs: towards a more fundamental understanding of biodiversity and community dynamics , 2012 .

[49]  Daniel Simberloff,et al.  The Assembly of Species Communities: Chance or Competition? , 1979 .

[50]  A. Cocucci,et al.  Temporal variation in the selection on floral traits in Cyclopogon elatus (Orchidaceae) , 2012, Evolutionary Ecology.

[51]  Carsten F. Dormann,et al.  Indices, Graphs and Null Models: Analyzing Bipartite Ecological Networks , 2009 .

[52]  P. Collins,et al.  Feeding ecology of the freshwater crab Trichodactylus borellianus (Decapoda: Trichodactylidae) in the floodplain of the Paraná River, southern South America. , 2013 .

[53]  J. Paggi,et al.  Hydrological Connectivity as a Shaping Force in the Zooplankton Community of Two Lakes in the Paraná River Floodplain , 2008 .

[54]  S. Bunn,et al.  Sources of organic carbon supporting the food web of an arid zone floodplain river , 2003 .

[55]  Colin R. Townsend,et al.  Energy availability, spatial heterogeneity and ecosystem size predict food-web structure in streams , 2005 .

[56]  S. Diehl Relative consumer sizes and the strengths of direct and indirect interactions in omnivorous feeding relationships , 1993 .

[57]  R. Vadas The importance of omnivory and predator regulation of prey in freshwater fish assemblages of North America , 1990, Environmental Biology of Fishes.

[58]  M. Marchese,et al.  Benthos of the lotic environments in the middle Paraná River system: transverse zonation , 1992, Hydrobiologia.

[59]  J. Titelman,et al.  Swimming and escape behavior of copepod nauplii: implications for predator-prey interactions among copepods , 2001 .

[60]  M. Ohman Behavioral responses of zooplankton to predation , 1988 .

[61]  Louis-Félix Bersier,et al.  Sampling effects and the robustness of quantitative and qualitative food-web descriptors. , 2004, Journal of theoretical biology.

[62]  R. Paine Food webs : linkage, interaction strength and community infrastructure , 1980 .

[63]  Rodrigo Ramos-Jiliberto,et al.  Immediate and delayed life-history responses of Daphnia ambigua to conspecific cues , 2008 .

[64]  Charles M. Newman,et al.  Dynamic Basis of Food Web Organization , 1988 .

[65]  M. Marchese,et al.  Food webs of the Paraná River floodplain: Assessing basal sources using stable carbon and nitrogen isotopes , 2014 .