Explicitly correlated local coupled‐cluster methods using pair natural orbitals

Recently developed explicitly correlated local coupled‐cluster methods [PNO‐LCCSD(T)‐F12] are reviewed. Extensive benchmarks for reaction energies and intermolecular interaction energies are presented, in which the convergence of the results with respect to all local approximations is studied. The explicit correlation treatment (F12) is shown to be essential to minimize basis set incompleteness errors, as well as errors caused by domain approximations. Generally, the errors of relative energies due to local approximations can be reduced to below 1 kcal/mol. The methods are well parallelized, and using small computer clusters with 100–200 computing cores, calculations for systems with 100–200 atoms using augmented triple‐ζ basis sets can be carried out within a few hours of elapsed time. Recommendations are made on how such calculations should be carried out, how the accuracy can be tested, and which computational resources are required.

[1]  Edward F. Valeev,et al.  Equations of explicitly-correlated coupled-cluster methods. , 2008, Physical chemistry chemical physics : PCCP.

[2]  So Hirata,et al.  Explicitly correlated coupled-cluster singles and doubles method based on complete diagrammatic equations. , 2008, The Journal of chemical physics.

[3]  Daniel Kats,et al.  Speeding up local correlation methods: System-inherent domains. , 2016, The Journal of chemical physics.

[4]  A. Hesselmann,et al.  Molecular energies from an incremental fragmentation method. , 2016, The Journal of chemical physics.

[5]  Frank Neese,et al.  Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals. , 2015, The Journal of chemical physics.

[6]  M. Nooijen,et al.  Dynamically screened local correlation method using enveloping localized orbitals. , 2006, The Journal of chemical physics.

[7]  T. Janowski Near Equivalence of Intrinsic Atomic Orbitals and Quasiatomic Orbitals. , 2014, Journal of chemical theory and computation.

[8]  Thomas Kjærgaard,et al.  The molecular gradient using the divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation theory: The DEC-RI-MP2 gradient. , 2016, The Journal of chemical physics.

[9]  Martin Head-Gordon,et al.  Non-iterative local second order Møller–Plesset theory , 1998 .

[10]  Shuhua Li,et al.  LSQC: Low scaling quantum chemistry program , 2015 .

[11]  K. Patkowski On the accuracy of explicitly correlated coupled-cluster interaction energies--have orbital results been beaten yet? , 2012, The Journal of chemical physics.

[12]  Hans-Joachim Werner,et al.  Calculation of smooth potential energy surfaces using local electron correlation methods. , 2006, The Journal of chemical physics.

[13]  J. V. Lenthe,et al.  State of the Art in Counterpoise Theory , 1994 .

[14]  P. Jørgensen,et al.  Characterization and Generation of Local Occupied and Virtual Hartree-Fock Orbitals. , 2016, Chemical reviews.

[15]  Frederick R Manby,et al.  The orbital-specific-virtual local coupled cluster singles and doubles method. , 2012, The Journal of chemical physics.

[16]  D. Tew,et al.  Quintuple-zeta quality coupled-cluster correlation energies with triple-zeta basis sets. , 2007, Physical chemistry chemical physics : PCCP.

[17]  W. Klopper Highly accurate coupled-cluster singlet and triplet pair energies from explicitly correlated calculations in comparison with extrapolation techniques , 2001 .

[18]  H. Stoll On the correlation energy of graphite , 1992 .

[19]  P. Taylor,et al.  A diagnostic for determining the quality of single‐reference electron correlation methods , 2009 .

[20]  Michael W. Schmidt,et al.  A comprehensive analysis of molecule-intrinsic quasi-atomic, bonding, and correlating orbitals. I. Hartree-Fock wave functions. , 2013, The Journal of chemical physics.

[21]  J. Noga,et al.  Explicitly correlated coupled cluster F12 theory with single and double excitations. , 2008, The Journal of chemical physics.

[22]  Daniel Kats,et al.  Sparse tensor framework for implementation of general local correlation methods. , 2013, The Journal of chemical physics.

[23]  P. Jørgensen,et al.  Orbital spaces in the divide-expand-consolidate coupled cluster method. , 2016, The Journal of chemical physics.

[24]  Frederick R Manby,et al.  Local explicitly correlated second-order perturbation theory for the accurate treatment of large molecules. , 2009, The Journal of chemical physics.

[25]  Frederick R Manby,et al.  Tensor factorizations of local second-order Møller-Plesset theory. , 2010, The Journal of chemical physics.

[26]  D. Tew,et al.  Communications: Accurate and efficient approximations to explicitly correlated coupled-cluster singles and doubles, CCSD-F12. , 2010, The Journal of chemical physics.

[27]  R. Bartlett,et al.  Natural linear-scaled coupled-cluster theory with local transferable triple excitations: applications to peptides. , 2008, The journal of physical chemistry. A.

[28]  Martin Schütz,et al.  Low-order scaling local electron correlation methods. V. Connected triples beyond (T): Linear scaling local CCSDT-1b , 2002 .

[29]  Georg Hetzer,et al.  Low-order scaling local electron correlation methods. I. Linear scaling local MP2 , 1999 .

[30]  Hans-Joachim Werner,et al.  Benchmark Studies for Explicitly Correlated Perturbation- and Coupled Cluster Theories. javascript:filterformular(´3´) , 2010 .

[31]  Guntram Rauhut,et al.  Analytical energy gradients for local coupled-cluster methods , 2001 .

[32]  F. Neese,et al.  Efficient and accurate local single reference correlation methods for high-spin open-shell molecules using pair natural orbitals. , 2011, The Journal of chemical physics.

[33]  Jirí Cerný,et al.  Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. , 2006, Physical chemistry chemical physics : PCCP.

[34]  P. Piecuch,et al.  Multilevel extension of the cluster-in-molecule local correlation methodology: merging coupled-cluster and Møller-Plesset perturbation theories. , 2010, The journal of physical chemistry. A.

[35]  Marius S Frank,et al.  The PNO–MP2 gradient and its application to molecular geometry optimisations , 2017 .

[36]  M. Hanauer,et al.  Response properties with explicitly correlated coupled-cluster methods using a Slater-type correlation factor and cusp conditions. , 2009, The Journal of chemical physics.

[37]  Philippe Y. Ayala,et al.  Linear scaling coupled cluster and perturbation theories in the atomic orbital basis , 1999 .

[38]  S. Ten-no A simple F12 geminal correction in multi-reference perturbation theory , 2007 .

[39]  Michael Dolg,et al.  Fully Automated Incremental Evaluation of MP2 and CCSD(T) Energies: Application to Water Clusters. , 2009, Journal of chemical theory and computation.

[40]  Mihály Kállay,et al.  Linear-scaling implementation of the direct random-phase approximation. , 2015, The Journal of chemical physics.

[41]  Frederick R Manby,et al.  Analytical energy gradients for local second-order Møller-Plesset perturbation theory using density fitting approximations. , 2004, The Journal of chemical physics.

[42]  H. Werner,et al.  Chapter 4 On the Selection of Domains and Orbital Pairs in Local Correlation Treatments , 2006 .

[43]  Wei Li,et al.  A refined cluster-in-molecule local correlation approach for predicting the relative energies of large systems. , 2012, Physical chemistry chemical physics : PCCP.

[44]  Georg Hetzer,et al.  Multipole approximation of distant pair energies in local MP2 calculations , 1998 .

[45]  M. Schütz,et al.  On the use of the Laplace transform in local correlation methods. , 2008, Physical chemistry chemical physics : PCCP.

[46]  J. Friedrich,et al.  Evaluation of incremental correlation energies for open-shell systems: application to the intermediates of the 4-exo cyclization, arduengo carbenes and an anionic water cluster. , 2008, The journal of physical chemistry. A.

[47]  Christian Ochsenfeld,et al.  An atomic orbital-based reformulation of energy gradients in second-order Møller-Plesset perturbation theory. , 2008, The Journal of chemical physics.

[48]  Christof Hättig,et al.  Local explicitly correlated second- and third-order Møller-Plesset perturbation theory with pair natural orbitals. , 2011, The Journal of chemical physics.

[49]  Peter Chen,et al.  Structure and bonding of isoleptic coinage metal (Cu, Ag, Au) dimethylaminonitrenes in the gas phase. , 2010, Journal of the American Chemical Society.

[50]  Thomas Kjærgaard,et al.  The divide–expand–consolidate coupled cluster scheme , 2017 .

[51]  D. Truhlar,et al.  Validation of electronic structure methods for isomerization reactions of large organic molecules. , 2011, Physical chemistry chemical physics : PCCP.

[52]  Walter Thiel,et al.  Toward accurate barriers for enzymatic reactions: QM/MM case study on p-hydroxybenzoate hydroxylase. , 2008, The Journal of chemical physics.

[53]  Hans-Joachim Werner,et al.  Explicitly Correlated Local Electron Correlation Methods , 2017 .

[54]  Hans-Joachim Werner,et al.  Scalable Electron Correlation Methods. 4. Parallel Explicitly Correlated Local Coupled Cluster with Pair Natural Orbitals (PNO-LCCSD-F12). , 2017, Journal of chemical theory and computation.

[55]  Edward F. Valeev Improving on the resolution of the identity in linear R12 ab initio theories , 2004 .

[56]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[57]  Georg Hetzer,et al.  Low-order scaling local correlation methods II: Splitting the Coulomb operator in linear scaling local second-order Møller–Plesset perturbation theory , 2000 .

[58]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals , 1963 .

[59]  Peter Pulay,et al.  The local correlation treatment. II. Implementation and tests , 1988 .

[60]  Susi Lehtola,et al.  Unitary Optimization of Localized Molecular Orbitals. , 2013, Journal of chemical theory and computation.

[61]  Wei Li,et al.  Cluster-in-molecule local correlation method for post-Hartree–Fock calculations of large systems , 2016 .

[62]  Michael Dolg,et al.  Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf-Pt. , 2009, The Journal of chemical physics.

[63]  S. Grimme Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies , 2003 .

[64]  W. Kutzelnigg,et al.  Møller-plesset calculations taking care of the correlation CUSP , 1987 .

[65]  Martin Schütz,et al.  Low-order scaling local electron correlation methods. III. Linear scaling local perturbative triples correction (T) , 2000 .

[66]  Kazuo Kitaura,et al.  Coupled-cluster theory based upon the fragment molecular-orbital method. , 2005, The Journal of chemical physics.

[67]  Martin Schütz,et al.  Molpro: a general‐purpose quantum chemistry program package , 2012 .

[68]  W. Kutzelnigg,et al.  CID and CEPA calculations with linear r12 terms , 1991 .

[69]  W. Kutzelnigg,et al.  Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. III. Second‐order Mo/ller–Plesset (MP2‐R12) calculations on molecules of first row atoms , 1991 .

[70]  Marek Sierka,et al.  Fast evaluation of the Coulomb potential for electron densities using multipole accelerated resolution of identity approximation , 2003 .

[71]  M. Krauss,et al.  Configuration‐Interaction Calculation of H3 and H2 , 1965 .

[72]  P Pulay,et al.  Local Treatment of Electron Correlation , 1993 .

[73]  Guntram Rauhut,et al.  Local Treatment of Electron Correlation in Molecular Clusters: Structures and Stabilities of (H2O)n, n = 2−4 , 1998 .

[74]  Mihály Kállay,et al.  Optimization of the linear-scaling local natural orbital CCSD(T) method: Redundancy-free triples correction using Laplace transform. , 2017, The Journal of chemical physics.

[75]  Hans-Joachim Werner,et al.  Comparison of explicitly correlated local coupled-cluster methods with various choices of virtual orbitals. , 2012, Physical chemistry chemical physics : PCCP.

[76]  Frank Neese,et al.  Natural triple excitations in local coupled cluster calculations with pair natural orbitals. , 2013, The Journal of chemical physics.

[77]  Frederick R Manby,et al.  General orbital invariant MP2-F12 theory. , 2007, The Journal of chemical physics.

[78]  Peter Pulay,et al.  Localizability of dynamic electron correlation , 1983 .

[79]  Edward F. Valeev,et al.  Simple coupled-cluster singles and doubles method with perturbative inclusion of triples and explicitly correlated geminals: The CCSD(T)R12 model. , 2008, The Journal of chemical physics.

[80]  Hans-Joachim Werner,et al.  Local treatment of electron correlation in coupled cluster theory , 1996 .

[81]  Peter Pulay,et al.  Orbital-invariant formulation and second-order gradient evaluation in Møller-Plesset perturbation theory , 1986 .

[82]  Guntram Rauhut,et al.  Analytical energy gradients for local second-order Mo/ller–Plesset perturbation theory , 1998 .

[83]  F. Neese,et al.  Communication: An improved linear scaling perturbative triples correction for the domain based local pair-natural orbital based singles and doubles coupled cluster method [DLPNO-CCSD(T)]. , 2018, The Journal of chemical physics.

[84]  A. Köhn A modified ansatz for explicitly correlated coupled-cluster wave functions that is suitable for response theory. , 2009, The Journal of chemical physics.

[85]  Jan Almlöf,et al.  Elimination of energy denominators in Møller—Plesset perturbation theory by a Laplace transform approach , 1991 .

[86]  Thomas Kjærgaard,et al.  Molecular gradient for second-order Møller-Plesset perturbation theory using the divide-expand-consolidate (DEC) scheme. , 2012, The Journal of chemical physics.

[87]  Spencer R Pruitt,et al.  Fragmentation methods: a route to accurate calculations on large systems. , 2012, Chemical reviews.

[88]  Seiichiro Ten-no,et al.  Initiation of explicitly correlated Slater-type geminal theory , 2004 .

[89]  A. Bach,et al.  Simple fitting of energy-resolved reactive cross sections in threshold collision-induced dissociation (T-CID) experiments. , 2007, The journal of physical chemistry. A.

[90]  Frederick R Manby,et al.  The orbital-specific virtual local triples correction: OSV-L(T). , 2013, The Journal of chemical physics.

[91]  Poul Jørgensen,et al.  The divide-expand-consolidate family of coupled cluster methods: numerical illustrations using second order Møller-Plesset perturbation theory. , 2012, The Journal of chemical physics.

[92]  Hans-Joachim Werner,et al.  Local explicitly correlated coupled-cluster methods: efficient removal of the basis set incompleteness and domain errors. , 2009, The Journal of chemical physics.

[93]  H. Lischka,et al.  PNO–CI (pair natural orbital configuration interaction) and CEPA–PNO (coupled electron pair approximation with pair natural orbitals) calculations of molecular systems. II. The molecules BeH2, BH, BH3, CH4, CH−3, NH3 (planar and pyramidal), H2O, OH+3, HF and the Ne atom , 1975 .

[94]  Edward F. Valeev,et al.  Explicitly correlated second-order Møller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context. , 2016, The Journal of chemical physics.

[95]  Krishnan Raghavachari,et al.  Dimers of Dimers (DOD): A New Fragment-Based Method Applied to Large Water Clusters. , 2014, Journal of chemical theory and computation.

[96]  Lori A Burns,et al.  Basis set convergence of the coupled-cluster correction, δ(MP2)(CCSD(T)): best practices for benchmarking non-covalent interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases. , 2011, The Journal of chemical physics.

[97]  Dominic A Sirianni,et al.  Comparison of Explicitly Correlated Methods for Computing High-Accuracy Benchmark Energies for Noncovalent Interactions. , 2017, Journal of chemical theory and computation.

[98]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[99]  Reinhold F. Fink,et al.  A multi-configuration reference CEPA method based on pair natural orbitals , 1993 .

[100]  Hans-Joachim Werner,et al.  Local perturbative triples correction (T) with linear cost scaling , 2000 .

[101]  P. Taylor A rapidly convergent CI expansion based on several reference configurations, using optimized correlating orbitals , 1981 .

[102]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[103]  Daniel Kats,et al.  Local complete active space second-order perturbation theory using pair natural orbitals (PNO-CASPT2). , 2016, The Journal of chemical physics.

[104]  Mihály Kállay,et al.  An Integral-Direct Linear-Scaling Second-Order Møller-Plesset Approach. , 2016, Journal of chemical theory and computation.

[105]  Michael Dolg,et al.  Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y-Pd. , 2007, The Journal of chemical physics.

[106]  Wim Klopper,et al.  Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory , 1991 .

[107]  A. Köhn Explicitly correlated connected triple excitations in coupled-cluster theory. , 2009, The Journal of chemical physics.

[108]  C. Ochsenfeld,et al.  Cholesky-decomposed density MP2 with density fitting: accurate MP2 and double-hybrid DFT energies for large systems. , 2014, The Journal of chemical physics.

[109]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[110]  Hans-Joachim Werner,et al.  Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD) , 2001 .

[111]  F. Neese,et al.  The resolution of identity and chain of spheres approximations for the LPNO-CCSD singles Fock term , 2012 .

[112]  Trygve Helgaker,et al.  Implementation of the incremental scheme for one-electron first-order properties in coupled-cluster theory. , 2009, The Journal of chemical physics.

[113]  Frank Neese,et al.  Software update: the ORCA program system, version 4.0 , 2018 .

[114]  Seiichiro Ten-no,et al.  Explicitly correlated electronic structure theory from R12/F12 ansätze , 2012 .

[115]  W. Klopper,et al.  Inclusion of the (T) triples correction into the linear‐r12 corrected coupled‐cluster model CCSD(R12) , 2006 .

[116]  P. Pulay,et al.  The accuracy of quantum chemical methods for large noncovalent complexes. , 2013, Journal of chemical theory and computation.

[117]  Hans-Joachim Werner,et al.  Eliminating the domain error in local explicitly correlated second-order Møller-Plesset perturbation theory. , 2008, The Journal of chemical physics.

[118]  Hans-Joachim Werner,et al.  Role of tunneling in the enzyme glutamate mutase. , 2012, The journal of physical chemistry. B.

[119]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[120]  J. Noga,et al.  Second order explicitly correlated R12 theory revisited: a second quantization framework for treatment of the operators' partitionings. , 2007, The Journal of chemical physics.

[121]  Frederick R. Manby,et al.  Linear scaling local coupled cluster theory with density fitting. Part I: 4-external integrals , 2003 .

[122]  Hans-Joachim Werner,et al.  Scalable Electron Correlation Methods. 5. Parallel Perturbative Triples Correction for Explicitly Correlated Local Coupled Cluster with Pair Natural Orbitals. , 2018, Journal of chemical theory and computation.

[123]  F. Sauter,et al.  Quantum Theory of Atoms, Molecules and the Solid State , 1968 .

[124]  Hans-Joachim Werner,et al.  A simple and efficient CCSD(T)-F12 approximation. , 2007, The Journal of chemical physics.

[125]  S. Grimme,et al.  Effects of London dispersion on the isomerization reactions of large organic molecules: a density functional benchmark study. , 2010, Physical chemistry chemical physics : PCCP.

[126]  M. Gordon,et al.  Combined fragment molecular orbital cluster in molecule approach to massively parallel electron correlation calculations for large systems. , 2015, The journal of physical chemistry. A.

[127]  Hans-Joachim Werner,et al.  Simplified CCSD(T)-F12 methods: theory and benchmarks. , 2009, The Journal of chemical physics.

[128]  Wilfried Meyer,et al.  Ionization energies of water from PNO‐CI calculations , 2009 .

[129]  Christian Ochsenfeld,et al.  A Linear-Scaling MP2 Method for Large Molecules by Rigorous Integral-Screening Criteria , 2010 .

[130]  P. Hobza,et al.  Benchmark Calculations of Interaction Energies in Noncovalent Complexes and Their Applications. , 2016, Chemical reviews.

[131]  Christian Ochsenfeld,et al.  Communication: An effective linear-scaling atomic-orbital reformulation of the random-phase approximation using a contracted double-Laplace transformation. , 2016, The Journal of chemical physics.

[132]  Peter Pulay,et al.  Local configuration interaction: An efficient approach for larger molecules , 1985 .

[133]  Hans-Joachim Werner,et al.  Explicitly correlated RMP2 for high-spin open-shell reference states. , 2008, The Journal of chemical physics.

[134]  Wim Klopper,et al.  Orbital-invariant formulation of the MP2-R12 method , 1991 .

[135]  Kasper Kristensen,et al.  The divide–expand–consolidate MP2 scheme goes massively parallel , 2013 .

[136]  Trygve Helgaker,et al.  Accuracy of atomization energies and reaction enthalpies in standard and extrapolated electronic wave function/basis set calculations , 2000 .

[137]  J. Noga,et al.  Implementation of the CCSD(T)-F12 method using cusp conditions. , 2008, Physical chemistry chemical physics : PCCP.

[138]  Curtis L. Janssen,et al.  New diagnostics for coupled-cluster and Møller–Plesset perturbation theory , 1998 .

[139]  Thomas Kjærgaard,et al.  Linear-Scaling Coupled Cluster with Perturbative Triple Excitations: The Divide-Expand-Consolidate CCSD(T) Model. , 2015, Journal of chemical theory and computation.

[140]  Florian Weigend,et al.  A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency , 2002 .

[141]  Werner Kutzelnigg,et al.  r12-Dependent terms in the wave function as closed sums of partial wave amplitudes for large l , 1985 .

[142]  Marcin Ziółkowski,et al.  A Locality Analysis of the Divide-Expand-Consolidate Coupled Cluster Amplitude Equations. , 2011, Journal of chemical theory and computation.

[143]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[144]  Wei Li,et al.  Local correlation calculations using standard and renormalized coupled-cluster approaches. , 2009, The Journal of chemical physics.

[145]  Mark S. Gordon Fragmentation: Toward Accurate Calculations on Complex Molecular Systems , 2017 .

[146]  Frank Neese,et al.  SparseMaps--A systematic infrastructure for reduced-scaling electronic structure methods. IV. Linear-scaling second-order explicitly correlated energy with pair natural orbitals. , 2016, The Journal of chemical physics.

[147]  Hans-Joachim Werner,et al.  An efficient local coupled cluster method for accurate thermochemistry of large systems. , 2011, The Journal of chemical physics.

[148]  A. Dutoi,et al.  Accurate local approximations to the triples correlation energy: formulation, implementation and tests of 5th-order scaling models , 2005 .

[149]  W. Kutzelnigg,et al.  MP2-R12 calculations on the relative stability of carbocations , 1990 .

[150]  Toru Shiozaki,et al.  Explicitly correlated multireference configuration interaction: MRCI-F12. , 2011, The Journal of chemical physics.

[151]  Jörg Kussmann,et al.  Linear-scaling atomic orbital-based second-order Møller-Plesset perturbation theory by rigorous integral screening criteria. , 2009, The Journal of chemical physics.

[152]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals. II , 1965 .

[153]  Peter Pulay,et al.  Fourth‐order Mo/ller–Plessett perturbation theory in the local correlation treatment. I. Method , 1987 .

[154]  Gareth W Richings,et al.  Implementation of the full explicitly correlated coupled-cluster singles and doubles model CCSD-F12 with optimally reduced auxiliary basis dependence. , 2008, The Journal of chemical physics.

[155]  Zoltán Rolik,et al.  An efficient linear-scaling CCSD(T) method based on local natural orbitals. , 2013, The Journal of chemical physics.

[156]  Hans-Joachim Werner,et al.  Scalable Electron Correlation Methods. 2. Parallel PNO-LMP2-F12 with Near Linear Scaling in the Molecular Size. , 2015, Journal of chemical theory and computation.

[157]  A regionally contracted multireference configuration interaction method: general theory and results of an incremental version. , 2011, The Journal of chemical physics.

[158]  M. Schütz,et al.  A comparison of metallophilic attraction in (X–M–PH3)2(M = Cu, Ag, Au; X = H, Cl) , 2002 .

[159]  R. T. Pack,et al.  Cusp Conditions for Molecular Wavefunctions , 1966 .

[160]  J. Noga,et al.  Coupled cluster theory that takes care of the correlation cusp by inclusion of linear terms in the interelectronic coordinates , 1994 .

[161]  D. Tew,et al.  Local explicitly correlated second-order Møller-Plesset perturbation theory with pair natural orbitals. , 2011, The Journal of chemical physics.

[162]  Wim Klopper,et al.  CC-R12, a correlation cusp corrected coupled-cluster method with a pilot application to the Be2 potential curve , 1992 .

[163]  Wei Li Linear scaling explicitly correlated MP2-F12 and ONIOM methods for the long-range interactions of the nanoscale clusters in methanol aqueous solutions. , 2013, The Journal of chemical physics.

[164]  R. Jaquet,et al.  CEPA calculations on open-shell molecules. I. Outline of the method , 1981 .

[165]  G. Rauhut,et al.  The vibrational spectra of furoxan and dichlorofuroxan: A comparative theoretical study using density functional theory and local electron correlation methods , 2003 .

[166]  Hans-Joachim Werner,et al.  Systematically convergent basis sets for explicitly correlated wavefunctions: the atoms H, He, B-Ne, and Al-Ar. , 2008, The Journal of chemical physics.

[167]  D. Tew,et al.  A diagonal orbital-invariant explicitly-correlated coupled-cluster method , 2008 .

[168]  Manoj K. Kesharwani,et al.  Exploring the Accuracy Limits of Local Pair Natural Orbital Coupled-Cluster Theory. , 2015, Journal of chemical theory and computation.

[169]  Dimitrios G Liakos,et al.  Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis. , 2009, The Journal of chemical physics.

[170]  Daniel Kats,et al.  Speeding up local correlation methods. , 2014, The Journal of chemical physics.

[171]  Seiichiro Ten-no,et al.  Explicitly correlated second order perturbation theory: introduction of a rational generator and numerical quadratures. , 2004, The Journal of chemical physics.

[172]  F. Neese,et al.  Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method. , 2009, The Journal of chemical physics.

[173]  Daniel Kats,et al.  Local CC2 response method for triplet states based on Laplace transform: excitation energies and first-order properties. , 2010, The Journal of chemical physics.

[174]  Wim Klopper,et al.  Explicitly correlated second-order Møller–Plesset methods with auxiliary basis sets , 2002 .

[175]  Frederick R Manby,et al.  Explicitly correlated local second-order perturbation theory with a frozen geminal correlation factor. , 2006, The Journal of chemical physics.

[176]  Guntram Rauhut,et al.  Impact of local and density fitting approximations on harmonic vibrational frequencies. , 2006, The journal of physical chemistry. A.

[177]  Hans-Joachim Werner,et al.  An explicitly correlated local coupled cluster method for calculations of large molecules close to the basis set limit. , 2011, The Journal of chemical physics.

[178]  Lorenzo Maschio,et al.  Local MP2 with Density Fitting for Periodic Systems: A Parallel Implementation. , 2011, Journal of chemical theory and computation.

[179]  Florian Weigend,et al.  Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials , 1997 .

[180]  Hans-Joachim Werner,et al.  Correlation regions within a localized molecular orbital approach. , 2008, The Journal of chemical physics.

[181]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[182]  Peter Chen,et al.  Experimental and theoretical study of a gold(I) aminonitrene complex in the gas phase. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[183]  Jan Almlöf,et al.  Laplace transform techniques in Mo/ller–Plesset perturbation theory , 1992 .

[184]  Martin Head-Gordon,et al.  Noniterative local second order Mo/ller–Plesset theory: Convergence with local correlation space , 1998 .

[185]  Pavel Hobza,et al.  Describing Noncovalent Interactions beyond the Common Approximations: How Accurate Is the "Gold Standard," CCSD(T) at the Complete Basis Set Limit? , 2013, Journal of chemical theory and computation.

[186]  D. Tew,et al.  Assessment of basis sets for F12 explicitly-correlated molecular electronic-structure methods , 2009 .

[187]  Wei Li,et al.  Improved design of orbital domains within the cluster-in-molecule local correlation framework: single-environment cluster-in-molecule ansatz and its application to local coupled-cluster approach with singles and doubles. , 2010, The journal of physical chemistry. A.

[188]  G. Rauhut,et al.  Local Treatment of Electron Correlation in Molecular Clusters: Structures and Stabilities of (H2O)n, n = 2—4. , 1998 .

[189]  E. Hylleraas,et al.  Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium , 1929 .

[190]  Martin Schütz,et al.  A multistate local coupled cluster CC2 response method based on the Laplace transform. , 2009, The Journal of chemical physics.

[191]  Frank Neese,et al.  SparseMaps-A systematic infrastructure for reduced scaling electronic structure methods. V. Linear scaling explicitly correlated coupled-cluster method with pair natural orbitals. , 2017, The Journal of chemical physics.

[192]  J. Noga,et al.  Alternative formulation of the matrix elements in MP2‐R12 theory , 2005 .

[193]  Manoj K. Kesharwani,et al.  The aug-cc-pVnZ-F12 basis set family: Correlation consistent basis sets for explicitly correlated benchmark calculations on anions and noncovalent complexes. , 2017, The Journal of chemical physics.

[194]  Frederick R. Manby,et al.  Explicitly correlated coupled cluster methods with pair-specific geminals , 2011 .

[195]  D. Tew,et al.  New correlation factors for explicitly correlated electronic wave functions. , 2005, The Journal of chemical physics.

[196]  Markus Reiher,et al.  New Benchmark Set of Transition-Metal Coordination Reactions for the Assessment of Density Functionals. , 2014, Journal of chemical theory and computation.

[197]  Takeshi Yoshikawa,et al.  Linear‐scaling self‐consistent field calculations based on divide‐and‐conquer method using resolution‐of‐identity approximation on graphical processing units , 2015, J. Comput. Chem..

[198]  F. Manby,et al.  An explicitly correlated second order Møller-Plesset theory using a frozen Gaussian geminal. , 2004, The Journal of chemical physics.

[199]  Edward F. Valeev,et al.  Coupled-cluster methods with perturbative inclusion of explicitly correlated terms: a preliminary investigation. , 2008, Physical chemistry chemical physics : PCCP.

[200]  Gunnar Schmitz,et al.  A scaling PNO–MP2 method using a hybrid OSV–PNO approach with an iterative direct generation of OSVs† , 2013 .

[201]  Cristina Puzzarini,et al.  Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements , 2005 .

[202]  Martin Head-Gordon,et al.  A Resolution-Of-The-Identity Implementation of the Local Triatomics-In-Molecules Model for Second-Order Møller-Plesset Perturbation Theory with Application to Alanine Tetrapeptide Conformational Energies. , 2005, Journal of chemical theory and computation.

[203]  Edward F. Valeev,et al.  Variational formulation of perturbative explicitly-correlated coupled-cluster methods. , 2008, Physical chemistry chemical physics : PCCP.

[204]  Joachim Friedrich,et al.  Incremental CCSD(T)(F12*)|MP2: A Black Box Method To Obtain Highly Accurate Reaction Energies. , 2013, Journal of chemical theory and computation.

[205]  Hans-Joachim Werner,et al.  Communication: Multipole approximations of distant pair energies in local correlation methods with pair natural orbitals. , 2016, The Journal of chemical physics.

[206]  Tosio Kato,et al.  On the Eigenfunctions of Many-Particle Systems in Quantum Mechanics , 2011 .

[207]  F. Neese,et al.  Communication: Exact analytical derivatives for the domain-based local pair natural orbital MP2 method (DLPNO-MP2). , 2018, The Journal of chemical physics.

[208]  S. F. Boys Construction of Some Molecular Orbitals to Be Approximately Invariant for Changes from One Molecule to Another , 1960 .

[209]  Christof Hättig,et al.  Quintuple-ζ quality coupled-cluster correlation energies with triple-ζ basis sets , 2007 .

[210]  Peter Pulay,et al.  Efficient elimination of basis set superposition errors by the local correlation method: Accurate ab initio studies of the water dimer , 1993 .

[211]  Dimitrios G Liakos,et al.  Weak Molecular Interactions Studied with Parallel Implementations of the Local Pair Natural Orbital Coupled Pair and Coupled Cluster Methods. , 2011, Journal of chemical theory and computation.

[212]  Branislav Jansík,et al.  Linear scaling coupled cluster method with correlation energy based error control. , 2010, The Journal of chemical physics.

[213]  Frank Neese,et al.  An efficient and near linear scaling pair natural orbital based local coupled cluster method. , 2013, The Journal of chemical physics.

[214]  Frederick R Manby,et al.  Optimization of orbital-specific virtuals in local Møller-Plesset perturbation theory. , 2012, The Journal of chemical physics.

[215]  V. Staemmler CEPA calculations on open-shell molecules , 1990 .

[216]  Frank Neese,et al.  Sparse maps--A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. , 2016, The Journal of chemical physics.

[217]  Toru Shiozaki,et al.  Multireference explicitly correlated F12 theories , 2013 .

[218]  Philippe Y. Ayala,et al.  Linear scaling second-order Moller–Plesset theory in the atomic orbital basis for large molecular systems , 1999 .

[219]  Frederick R. Manby,et al.  Density fitting in second-order linear-r12 Møller–Plesset perturbation theory , 2003 .

[220]  Hans-Joachim Werner,et al.  Scalable Electron Correlation Methods. 3. Efficient and Accurate Parallel Local Coupled Cluster with Pair Natural Orbitals (PNO-LCCSD). , 2017, Journal of chemical theory and computation.

[221]  H. Werner,et al.  On the use of Abelian point group symmetry in density-fitted local MP2 using various types of virtual orbitals. , 2015, The Journal of chemical physics.

[222]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[223]  S. Ten-no,et al.  Implementation of the CCSD(T)(F12) method using numerical quadratures , 2009 .

[224]  Manoj K. Kesharwani,et al.  Some Observations on Counterpoise Corrections for Explicitly Correlated Calculations on Noncovalent Interactions. , 2014, Journal of chemical theory and computation.

[225]  Manoj K. Kesharwani,et al.  The cc-pV5Z-F12 basis set: reaching the basis set limit in explicitly correlated calculations , 2014, 1411.6827.

[226]  H. Lischka,et al.  PNO-CI (pair natural-orbital configuration interaction) and CEPA-PNO (coupled electron pair approximation with pair natural orbitals) calculations of molecular systems. , 1975 .

[227]  Hans-Joachim Werner,et al.  Accurate calculations of intermolecular interaction energies using explicitly correlated coupled cluster wave functions and a dispersion-weighted MP2 method. , 2009, The journal of physical chemistry. A.

[228]  Hans-Joachim Werner,et al.  Scalable electron correlation methods I.: PNO-LMP2 with linear scaling in the molecular size and near-inverse-linear scaling in the number of processors. , 2015, Journal of chemical theory and computation.

[229]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[230]  Guntram Rauhut,et al.  Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration Dirac–Hartree–Fock data , 2005 .

[231]  S. Ten-no,et al.  Perspective: Explicitly correlated electronic structure theory for complex systems. , 2017, The Journal of chemical physics.

[232]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisited , 2001 .

[233]  Frederick R. Manby,et al.  Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations , 2003 .

[234]  T. Daniel Crawford,et al.  Local correlation in coupled cluster calculations of molecular response properties , 2004 .

[235]  Gunnar Schmitz,et al.  Perturbative triples correction for local pair natural orbital based explicitly correlated CCSD(F12*) using Laplace transformation techniques. , 2016, The Journal of chemical physics.

[236]  M. Schütz,et al.  Efficient and accurate treatment of weak pairs in local CCSD(T) calculations. II. Beyond the ring approximation. , 2014, The Journal of chemical physics.

[237]  Thomas Kjærgaard,et al.  Efficient linear-scaling second-order Møller-Plesset perturbation theory: The divide-expand-consolidate RI-MP2 model. , 2016, The Journal of chemical physics.

[238]  N. Hush,et al.  The coupled-pair approximation in a basis of independent-pair natural orbitals , 1976 .

[239]  Gerald Knizia,et al.  Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. , 2013, Journal of chemical theory and computation.

[240]  F. Weigend,et al.  Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations , 2002 .

[241]  H. Werner,et al.  Benchmark Studies for Explicitly Correlated Perturbation- and Coupled Cluster Theories , 2010 .

[242]  Shuhua Li,et al.  Improved cluster-in-molecule local correlation approach for electron correlation calculation of large systems. , 2014, The journal of physical chemistry. A.

[243]  Toward a W4-F12 approach: Can explicitly correlated and orbital-based ab initio CCSD(T) limits be reconciled? , 2016, The Journal of chemical physics.

[244]  Jarek Nieplocha,et al.  Advances, Applications and Performance of the Global Arrays Shared Memory Programming Toolkit , 2006, Int. J. High Perform. Comput. Appl..

[245]  Lori A Burns,et al.  Comparing Counterpoise-Corrected, Uncorrected, and Averaged Binding Energies for Benchmarking Noncovalent Interactions. , 2014, Journal of chemical theory and computation.

[246]  Zoltán Rolik,et al.  A general-order local coupled-cluster method based on the cluster-in-molecule approach. , 2011, The Journal of chemical physics.

[247]  Michael Dolg,et al.  Implementation and performance of a domain-specific basis set incremental approach for correlation energies: applications to hydrocarbons and a glycine oligomer. , 2008, The Journal of chemical physics.

[248]  Michael Dolg,et al.  Fully automated implementation of the incremental scheme: application to CCSD energies for hydrocarbons and transition metal compounds. , 2007, The Journal of chemical physics.

[249]  Adrian J Mulholland,et al.  High-accuracy computation of reaction barriers in enzymes. , 2006, Angewandte Chemie.

[250]  Hans-Joachim Werner,et al.  Communication: Improved pair approximations in local coupled-cluster methods. , 2015, The Journal of chemical physics.

[251]  Mark S. Gordon,et al.  Accurate methods for large molecular systems. , 2009, The journal of physical chemistry. B.

[252]  Hans-Joachim Werner,et al.  Calculation of intermolecular interactions in the benzene dimer using coupled-cluster and local electron correlation methods. , 2006, Physical chemistry chemical physics : PCCP.

[253]  John A. Parkhill,et al.  Penalty functions for combining coupled-cluster and perturbation amplitudes in local correlation methods with optimized orbitals , 2008 .

[254]  Ricardo A. Mata,et al.  Local correlation methods with a natural localized molecular orbital basis , 2007 .

[255]  Wilfried Meyer,et al.  PNO–CI Studies of electron correlation effects. I. Configuration expansion by means of nonorthogonal orbitals, and application to the ground state and ionized states of methane , 1973 .

[256]  C Z Wang,et al.  Molecule intrinsic minimal basis sets. I. Exact resolution of ab initio optimized molecular orbitals in terms of deformed atomic minimal-basis orbitals. , 2004, The Journal of chemical physics.

[257]  Edward F. Valeev,et al.  Explicitly correlated R12/F12 methods for electronic structure. , 2012, Chemical reviews.

[258]  Jörg Kussmann,et al.  Linear‐scaling Cholesky decomposition , 2008, J. Comput. Chem..

[259]  W. Klopper,et al.  Coupled-cluster theory with simplified linear-r(12) corrections: the CCSD(R12) model. , 2005, The Journal of chemical physics.

[260]  Martin Head-Gordon,et al.  A local correlation model that yields intrinsically smooth potential-energy surfaces. , 2005, The Journal of chemical physics.

[261]  So Hirata,et al.  Higher-order explicitly correlated coupled-cluster methods. , 2009, The Journal of chemical physics.

[262]  S. F. Boys,et al.  Canonical Configurational Interaction Procedure , 1960 .

[263]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.