Micro-computed tomography for natural history specimens: a handbook of best practice protocols

Micro-computed tomography (micro-CT or microtomography) is a non-destructive imaging technique using X-rays which allows the digitisation of an object in three dimensions. The ability of micro-CT imaging to visualise both internal and external features of an object, without destroying the specimen, makes the technique ideal for the digitisation of valuable natural history collections. This handbook serves as a comprehensive guide to laboratory micro-CT imaging of different types of natural history specimens, including zoological, botanical, palaeontological and geological samples. The basic principles of the micro-CT technology are presented, as well as protocols, tips and tricks and use cases for each type of natural history specimen. Finally, data management protocols and a comprehensive list of institutions with micro-CT facilities, micro-CT manufacturers and relative software are included.

[1]  T. Turpeinen,et al.  Imaging connected porosity of crystalline rock by contrast agent‐aided X‐ray microtomography and scanning electron microscopy , 2018, Journal of microscopy.

[2]  B. Metscher MicroCT for developmental biology: A versatile tool for high‐contrast 3D imaging at histological resolutions , 2009, Developmental dynamics : an official publication of the American Association of Anatomists.

[3]  Carole T. Gee,et al.  Applying microCT and 3D visualization to Jurassic silicified conifer seed cones: A virtual advantage over thin-sectioning1 , 2013, Applications in plant sciences.

[4]  William D. Carlson,et al.  Mechanisms of Porphyroblast Crystallization: Results from High-Resolution Computed X-ray Tomography , 1992, Science.

[5]  Jiří Kvaček,et al.  Pseudoasterophyllites cretaceus from the Cenomanian (Cretaceous) of the Czech Republic: a possible link between Chloranthaceae and Ceratophyllum , 2016 .

[6]  Sarah Faulwetter,et al.  The pros and cons of using micro-computed tomography in gross and microanatomical assessments of polychaetous annelids , 2014 .

[7]  S. Porembski,et al.  Anatomical analysis of turgescent and semi‐dry resurrection plants: The effect of sample preparation on the sample, resolution, and image quality of X‐ray micro‐computed tomography (μCT) , 2011, Microscopy research and technique.

[8]  Gerd Weidemann,et al.  Heavy metal--a contrasting substance for micro-tomographical visualization of scorpion book lungs. , 2009, Micron.

[9]  Jouha Min,et al.  Quantitative three-dimensional analysis of embryonic chick morphogenesis via microcomputed tomography. , 2011, Anatomical record.

[10]  D Van Loo,et al.  An exploratory study of contrast agents for soft tissue visualization by means of high resolution X‐ray computed tomography imaging , 2013, Journal of microscopy.

[11]  E Johnson,et al.  Specimen Preparation for X-ray Micro-Computed Tomography of Plants , 2011, Microscopy and Microanalysis.

[12]  Gregor Hagedorn,et al.  Creative Commons licenses and the non-commercial condition: Implications for the re-use of biodiversity information , 2011, ZooKeys.

[13]  O. Green A Manual of Practical Laboratory and Field Techniques in Palaeobiology , 2001 .

[14]  Gerhard Scholtz,et al.  When a 520 million-year-old Chengjiang fossil meets a modern micro-CT – a case study , 2015, Scientific Reports.

[15]  S. Mooney,et al.  Seeing space: visualization and quantification of plant leaf structure using X-ray micro-computed tomography. , 2013, Journal of experimental botany.

[16]  D. Inzé,et al.  Plant structure visualization by high-resolution X-ray computed tomography. , 2010, Trends in plant science.

[17]  Andrew J. McElrone,et al.  Automated analysis of three-dimensional xylem networks using high-resolution computed tomography. , 2011, The New phytologist.

[18]  S. Faulwetter,et al.  Exploring methods to remove iodine and phosphotungstic acid stains from zoological specimens , 2015 .

[19]  Brian D. Metscher,et al.  X-ray microtomographic imaging of intact vertebrate embryos. , 2011, Cold Spring Harbor protocols.

[20]  Francesco De Carlo,et al.  About a method for compressing x-ray computed microtomography data , 2018 .

[21]  Jakob C. Larsson,et al.  Removal of ring artifacts in microtomography by characterization of scintillator variations. , 2017, Optics express.

[22]  P. Cloetens,et al.  Imaging applications of synchrotron X‐ray phase‐contrast microtomography in biological morphology and biomaterials science. I. General aspects of the technique and its advantages in the analysis of millimetre‐sized arthropod structure , 2007, Journal of microscopy.

[23]  Kenneth G. Johnson,et al.  Quantification of porosity in Acropora pulchra (Brook 1891) using X-ray micro-computed tomography techniques , 2010 .

[24]  Richard L. Abel,et al.  A palaeobiologist's guide to 'virtual' micro-CT preparation , 2012 .

[25]  Zhong-Qiang Chen,et al.  Palaeoecology of microconchids from microbialites near the Permian–Triassic boundary in South China , 2015 .

[26]  Nicholas F. Polys,et al.  Three-dimensional microCT analysis of the Ediacara fossil Pteridinium simplex sheds new light on its ecology and phylogenetic affinity , 2014 .

[27]  A Sadr,et al.  Enamel Lesion Parameter Correlations between Polychromatic Micro-CT and TMR , 2012, Journal of dental research.

[28]  S. L. Wellington,et al.  X-ray computerized tomography , 1987 .

[29]  Premkumar Elangovan,et al.  PhaseQuant: A tool for quantifying tomographic data sets of geological specimens , 2012, Comput. Geosci..

[30]  Dilworth Y Parkinson,et al.  Using high resolution computed tomography to visualize the three dimensional structure and function of plant vasculature. , 2013, Journal of visualized experiments : JoVE.

[31]  Laura E. Dixon,et al.  A new opening for wheat seed production , 2018, Journal of experimental botany.

[32]  Imran A. Rahman,et al.  Virtual paleontology: computer-aided analysis of fossil form and function , 2014 .

[33]  Marco Stampanoni,et al.  Phase-contrast X-ray microtomography links Cretaceous seeds with Gnetales and Bennettitales , 2007, Nature.

[34]  Ágnes Görög,et al.  Methodology of the micro-computer tomography on foraminifera , 2012 .

[35]  F. Boas,et al.  CT artifacts: Causes and reduction techniques , 2012 .

[36]  B. Metscher MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues , 2009, BMC Physiology.

[37]  R. Cesareo,et al.  USING A COMPUTED TOMOGRAPHY MINISCANNER IN SOIL SCIENCE , 1986 .

[38]  Christoph Groden,et al.  Application of micro-CT in small animal imaging. , 2010, Methods.

[39]  Fernanda Bribiesca-Contreras,et al.  Three-dimensional visualisation of the internal anatomy of the sparrowhawk (Accipiter nisus) forelimb using contrast-enhanced micro-computed tomography , 2017, PeerJ.

[40]  S Handschuh,et al.  Novel computed tomography-based tools reliably quantify plant reproductive investment , 2017, bioRxiv.

[41]  Imran A. Rahman,et al.  Techniques for Virtual Palaeontology , 2014 .

[42]  Jesús Marugán-Lobón,et al.  Open data and digital morphology , 2017, Proceedings of the Royal Society B: Biological Sciences.

[43]  Nesrine Akkari,et al.  A New Dimension in Documenting New Species: High-Detail Imaging for Myriapod Taxonomy and First 3D Cybertype of a New Millipede Species (Diplopoda, Julida, Julidae) , 2015, PloS one.

[44]  Griffiths G. Atungulu,et al.  Three-Dimensional Geometric Modeling of Processing Tomatoes , 2011 .

[45]  S. Goldstein,et al.  Beam hardening artifacts in micro-computed tomography scanning can be reduced by X-ray beam filtration and the resulting images can be used to accurately measure BMD. , 2009, Bone.

[46]  Takeshi Kubo,et al.  Development and Evaluation of a Low-Cost and High-Capacity DICOM Image Data Storage System for Research , 2011, Journal of Digital Imaging.

[47]  C. Zollikofer,et al.  Three-dimensional geometric morphometrics for studying floral shape variation. , 2010, Trends in plant science.

[48]  Radek Vodrážka A NEW METHOD FOR THE EXTRACTION OF MACROFOSSILS FROM CALCAREOUS ROCKS USING SULPHURIC ACID , 2009 .

[49]  Frédéric Verhelst,et al.  Quantitative characterization of coal by means of microfocal X-ray computed microtomography (CMT) and color image analysis (CIA) , 1997 .

[50]  R. Ketcham,et al.  Utility of high resolution x-ray computed tomography (HRXCT) for paleobotanical studies: an example using London Clay fruits and seeds. , 2006, American journal of botany.

[51]  Bruno De Man,et al.  Iterative reconstruction for reduction of metal artifacts in computed tomography , 2001 .

[52]  Shaun S. Gleason,et al.  Monitoring plant growth using high resolution micro-CT images , 2011, Electronic Imaging.

[53]  Ke Pang,et al.  Orbisiana linearis from the early Ediacaran Lantian Formation of South China and its taphonomic and ecological implications , 2014 .

[54]  Allan S. Jones,et al.  X-ray microtomography of 410 million-year-old optic capsules from placoderm fishes. , 2005, Micron.

[55]  Peter J. Eng,et al.  Geoscience applications of x-ray computed microtomography , 1999, Optics & Photonics.

[56]  Mark D Sutton,et al.  Tomographic techniques for the study of exceptionally preserved fossils , 2008, Proceedings of the Royal Society B: Biological Sciences.

[57]  G. Giribet,et al.  A Paleozoic Stem Group to Mite Harvestmen Revealed through Integration of Phylogenetics and Development , 2014, Current Biology.

[58]  Jürg Schönenberger,et al.  Plant Tissues in 3D via X-Ray Tomography: Simple Contrasting Methods Allow High Resolution Imaging , 2013, PloS one.

[59]  Kentaro Uesugi,et al.  X-ray microtomographic imaging of three-dimensional structure of soft tissues. , 2008, Tissue engineering. Part C, Methods.

[60]  David G Barnes,et al.  Interactive 3D volume rendering in biomedical publications. , 2010, Micron.

[61]  Brendan Choat,et al.  The Dynamics of Embolism Repair in Xylem: In Vivo Visualizations Using High-Resolution Computed Tomography1[C][W][OA] , 2010, Plant Physiology.

[62]  S. Mooney,et al.  Developing X-ray Computed Tomography to non-invasively image 3-D root systems architecture in soil , 2011, Plant and Soil.

[63]  Yan-Fu Kuo,et al.  Quantifying floral shape variation in 3D using microcomputed tomography: a case study of a hybrid line between actinomorphic and zygomorphic flowers , 2015, Front. Plant Sci..

[64]  W. Stuppy,et al.  Three-dimensional analysis of plant structure using high-resolution X-ray computed tomography. , 2003, Trends in plant science.

[65]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[66]  Jan Sijbers,et al.  TomoBank: a tomographic data repository for computational x-ray science , 2018 .

[67]  R Mark Henkelman,et al.  Diffusible iodine‐based contrast‐enhanced computed tomography (diceCT): an emerging tool for rapid, high‐resolution, 3‐D imaging of metazoan soft tissues , 2016, Journal of anatomy.

[68]  Allan S. Jones,et al.  Micro-CT as a novel technique for 3D reconstruction of molluscan anatomy , 2007 .

[69]  Veerle Cnudde,et al.  Micro-CT of fossils preserved in amber , 2007 .

[70]  Philip D. Gingerich,et al.  Correction: Complete Primate Skeleton from the Middle Eocene of Messel in Germany: Morphology and Paleobiology , 2009, PLoS ONE.

[71]  John A Jansen,et al.  Micro-computed tomographical imaging of soft biological materials using contrast techniques. , 2009, Tissue engineering. Part C, Methods.

[72]  Jiří Kvaček,et al.  Stutzeliastrobus Bohemicus Comb. Nov. – Basal Cupressaceae Conife from the Cenomanian of the Bohemian Cretaceous Basin, Central Europe , 2018, Fossil Imprint.

[73]  A Sasov,et al.  A post-scan method for correcting artefacts of slow geometry changes during micro-tomographic scans. , 2009, Journal of X-ray science and technology.

[74]  Steven M. Stanley Exploring Earth And Life Through Time , 1992 .

[75]  Jiří Kvaček,et al.  Zlivifructus gen. nov., a new member of the Normapolles complex , 2017 .

[76]  R. Ketcham,et al.  Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the geosciences , 2001 .

[77]  Premkumar Elangovan,et al.  Visualisation and quantification of CV chondrite petrography using micro-tomography , 2013 .

[78]  Richard A. Ketcham,et al.  An investigation of the efficacy and mechanism of contrast-enhanced X-ray Computed Tomography utilizing iodine for large specimens through experimental and simulation approaches , 2015, BMC Physiology.

[79]  Jürg Schönenberger,et al.  Correction: Histological and Micro-CT Evidence of Stigmatic Rostellum Receptivity Promoting Auto-Pollination in the Madagascan Orchid Bulbophyllum bicoloratum , 2013, PLoS ONE.

[80]  Kentaro Uesugi,et al.  Computed tomography imaging of the neuronal structure of Drosophila brain. , 2007, Journal of synchrotron radiation.

[81]  Erwan Plougonven,et al.  Characterisation of macadamia nuts using X-ray microtomography , 2012 .

[82]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[83]  T. Rowe,et al.  High resolution computed tomography: A breakthrough technology for earth scientists , 1997 .

[84]  Andrea Benedetti,et al.  X-ray microtomography as a tool to present and discuss new taxa: The example of Risananeiza sp. from the late Chattian of Porto Badisco , 2012 .

[85]  Anne E. Trefethen,et al.  Toward interoperable bioscience data , 2012, Nature Genetics.

[86]  M. Siegrist,et al.  Description of an ancient social bee trapped in amber using diagnostic radioentomology , 2011, Insectes Sociaux.

[87]  Charles H. Wellman,et al.  Extracting plant mesofossils and megafossils by bulk acid maceration , 1999 .

[88]  C. Brodersen,et al.  New frontiers in the three-dimensional visualization of plant structure and function. , 2016, American journal of botany.

[89]  Lennart Jeppsson,et al.  The optimal acetate buffered acetic acid technique for extracting phosphatic fossils , 1999, Journal of Paleontology.

[90]  M. Colbert,et al.  Applications of high-resolution X-ray computed tomography in petrology, meteoritics and palaeontology , 2003, Geological Society, London, Special Publications.

[91]  Casey M. Holliday,et al.  A 3D Interactive Model and Atlas of the Jaw Musculature of Alligator mississippiensis , 2013, PloS one.

[92]  A. Needham,et al.  Martian subsurface fluid pathways and 3D mineralogy of the Nakhla meteorite , 2013 .

[93]  Julia F. Barrett,et al.  Artifacts in CT: recognition and avoidance. , 2004, Radiographics : a review publication of the Radiological Society of North America, Inc.

[94]  Julia F. Barrett,et al.  Artifacts in CT: Recog- nition and Avoidance 1 , 2004 .

[95]  Veerle Cnudde,et al.  Recent progress in X-ray CT as a geosciences tool , 2006 .

[96]  Sung June Kim,et al.  Synthesis of nanoparticle CT contrast agents: in vitro and in vivo studies , 2015, Science and technology of advanced materials.

[97]  R. Ketcham,et al.  Three‐dimensional quantitative textural analysis of metamorphic rocks using high‐resolution computed X‐ray tomography: Part I. Methods and techniques , 1997 .

[98]  H. Godfray,et al.  Linnaeus in the information age , 2007, Nature.

[99]  Gonzalo Giribet,et al.  Sine Systemate Chaos? A Versatile Tool for Earthworm Taxonomy: Non-Destructive Imaging of Freshly Fixed and Museum Specimens Using Micro-Computed Tomography , 2014, PloS one.

[100]  B. Masschaele,et al.  A new preparation method to study fresh plant structures with X‐ray computed tomography , 2009, Journal of microscopy.

[101]  A. Briguglio,et al.  Fossilized bioelectric wire – the trace fossil Trichichnus , 2014, Biogeosciences.

[102]  Gerd B. Müller,et al.  Heterochrony and Early Left-Right Asymmetry in the Development of the Cardiorespiratory System of Snakes , 2015, PloS one.

[103]  Kentaro Uesugi,et al.  Element-specific microtomographic imaging of Drosophila brain stained with high-Z probes. , 2008, Journal of synchrotron radiation.

[104]  Ryuta Mizutani,et al.  X-ray microtomography in biology. , 2012, Micron.

[105]  Osu Lilje,et al.  Three dimensional quantification of biological samples using micro-computer aided tomography (microCT). , 2013, Journal of microbiological methods.

[106]  Chris Moran,et al.  X-ray computed tomography to quantify tree rooting spatial distributions , 1999 .

[107]  Veerle Cnudde,et al.  First fossil Micropholcommatidae (Araneae), imaged in Eocene Paris amber using X-Ray Computed Tomography , 2007 .

[108]  Nikos Minadakis,et al.  Micro-CTvlab: A web based virtual gallery of biological specimens using X-ray microtomography (micro-CT) , 2016, Biodiversity data journal.

[109]  Hilip,et al.  The World at the Time of Messel 91 Morphology and evolution of the distal phalanges in primates , 2012 .

[110]  Beatriz N Torrano-Silva,et al.  Unveiling privacy: advances in microtomography of coralline algae. , 2015, Micron.

[111]  R. L. Abel,et al.  Digital preservation and dissemination of ancient lithic technology with modern micro-CT , 2011, Comput. Graph..

[112]  Graham R. Davis,et al.  X-ray microtomography scanner using time-delay integration for elimination of ring artefacts in the reconstructed image , 1997 .

[113]  Jiří Kvaček,et al.  Fossil angiosperm fruit Allericarpus parvivalvis (Ericales) from the Coniacian of the Bohemian Cretaceous Basin , 2017 .

[114]  E Badel,et al.  X-ray microtomography (micro-CT): a reference technology for high-resolution quantification of xylem embolism in trees. , 2015, Plant, cell & environment.

[115]  Vincent S. Smith,et al.  No specimen left behind: industrial scale digitization of natural history collections , 2012, ZooKeys.

[116]  Emmanuel G. Reynaud,et al.  The future of three-dimensional microscopic imaging in marine biology , 2011 .

[117]  Paul M Gignac,et al.  Iodine-enhanced micro-CT imaging: methodological refinements for the study of the soft-tissue anatomy of post-embryonic vertebrates. , 2014, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[118]  Alexander Flisch,et al.  INDUSTRIAL X-RAY COMPUTED TOMOGRAPHY APLIED TO PALEOBOTANICAL RESEARCH , 2000 .

[119]  Harry Y. McSween,et al.  SIZES AND MASSES OF CHONDRULES AND METAL-TROILITE GRAINS IN ORDINARY CHONDRITES : POSSIBLE IMPLICATIONS FOR NEBULAR SORTING , 1999 .

[120]  Richard L. Abel,et al.  Micro-CT X-rays do not fragment DNA in preserved bird skins , 2012 .

[121]  D. Konietzko-Meier,et al.  A histological study of a femur of Plagiosuchus, a Middle Triassic temnospondyl amphibian from southern Germany, using thin sections and micro-CT scanning∙ , 2013, Netherlands Journal of Geosciences - Geologie en Mijnbouw.

[122]  Sarah Faulwetter,et al.  Micro-computed tomography: Introducing new dimensions to taxonomy , 2013, ZooKeys.

[123]  Brendan Choat,et al.  In Vivo Visualizations of Drought-Induced Embolism Spread in Vitis vinifera1[W][OA] , 2013, Plant Physiology.

[124]  Jiang Hsieh,et al.  Computed Tomography: Principles, Design, Artifacts, and Recent Advances, Fourth Edition , 2022 .

[125]  Premkumar Elangovan,et al.  Improved segmentation of meteorite micro-CT images using local histograms , 2012, Comput. Geosci..

[126]  C. Arvanitidis,et al.  First steps towards the development of an integrated metadata management system for biodiversity-related micro-CT datasets , 2015 .

[127]  K. Perez Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , 2014 .

[128]  M. Schreibman,et al.  Humason's Animal tissue techniques , 1997 .

[129]  Luca Bondioli,et al.  MicroCT Scan in paleobiology: application to the study of dental tissues , 2004 .

[130]  A. Bravin,et al.  Applications of X-ray synchrotron microtomography for non-destructive 3 D studies of paleontological specimens , 2006 .

[131]  D. Wildenschild,et al.  Imaging biofilm in porous media using X‐ray computed microtomography , 2011, Journal of microscopy.

[132]  Sarah Faulwetter,et al.  Investigation of contrast enhancing techniques for the application of Micro-CT in marine biodiversity studies , 2012 .

[133]  Deg Briggs,et al.  Methodologies for the visualization and reconstruction of three-dimensional fossils from the Silurian Herefordshire Lagerstätte , 2001 .

[134]  A. McElrone,et al.  Grapevine species from varied native habitats exhibit differences in embolism formation/repair associated with leaf gas exchange and root pressure. , 2015, Plant, cell & environment.

[135]  D. Rödder,et al.  Modern morphological methods for tadpole studies. A comparison of micro-CT, and clearing and staining protocols modified for frog larvae , 2017, Biotechnic & histochemistry : official publication of the Biological Stain Commission.

[136]  A.,et al.  Revealing effects of ocean acidification on the calcified structures of marine invertebrates through micro-computed tomography ( micro-CT ) , 2015 .

[137]  Anne E Carpenter,et al.  Visualization of image data from cells to organisms , 2010, Nature Methods.