First‐principles calculations of NMR parameters for phosphate materials

In this short review, we discuss the ability to reproduce NMR parameters in the case of phosphates materials through electronic structure calculation within density functional theory linear response. Indeed, the gauge‐including projector‐augmented wave is today largely used by the solid‐state NMR community as a tool for structural determination and it has been applied to a large variety of materials. We emphasise on the crucial points that should be taken into account to perform such calculations. In particular, we discuss the influence of the electronic structure and of the geometry on the calculation of NMR parameters. To illustrate the review, we present experimental and theoretical comparison of 31P, 1H and 23Na NMR data on a series of sodium phosphate systems. Copyright © 2010 John Wiley & Sons, Ltd.

[1]  F. Mauri,et al.  Implementation of high resolution 43Ca solid state NMR spectroscopy: toward the elucidation of calcium sites in biological materials. , 2009, Journal of the American Chemical Society.

[2]  F. Mauri,et al.  First-Principles Nuclear Magnetic Resonance Structural Analysis of Vitreous Silica , 2009 .

[3]  C. Pickard,et al.  Calculation of NMR chemical shifts in organic solids: accounting for motional effects. , 2009, The Journal of chemical physics.

[4]  C. Pickard,et al.  Solid-state 17O NMR spectroscopy of hydrous magnesium silicates: Evidence for proton dynamics , 2009 .

[5]  Chris J. Pickard,et al.  DFT calculations of quadrupolar solid‐state NMR properties: Some examples in solid‐state inorganic chemistry , 2008, J. Comput. Chem..

[6]  F. Mauri,et al.  17O solid-state NMR and first-principles calculations of sodium trimetaphosphate (Na3P3O9), tripolyphosphate (Na5P3O10), and pyrophosphate (Na4P2O7). , 2008, Inorganic chemistry.

[7]  John S. O. Evans,et al.  Using 17O solid‐state NMR and first principles calculation to characterise structure and dynamics in inorganic framework materials , 2007, Magnetic resonance in chemistry : MRC.

[8]  J. Yates,et al.  Chemical shift computations on a crystallographic basis: some reflections and comments , 2007, Magnetic resonance in chemistry : MRC.

[9]  C. Pickard,et al.  17O and 29Si NMR parameters of MgSiO3 phases from high-resolution solid-state NMR spectroscopy and first-principles calculations. , 2007, Journal of the American Chemical Society.

[10]  E. Salager,et al.  Resolving structures from powders by NMR crystallography using combined proton spin diffusion and plane wave DFT calculations. , 2007, Journal of the American Chemical Society.

[11]  C. Pickard,et al.  First-principles calculations of solid-state (17)O and (29)Si NMR spectra of Mg(2)SiO(4) polymorphs. , 2007, Physical chemistry chemical physics : PCCP.

[12]  L. Truflandier,et al.  DFT investigation of 3d transition metal NMR shielding tensors using the gauge-including projector augmented-wave method , 2007, cond-mat/0703553.

[13]  Steven P. Brown,et al.  An investigation of weak CH...O hydrogen bonds in maltose anomers by a combination of calculation and experimental solid-state NMR spectroscopy. , 2005, Journal of the American Chemical Society.

[14]  F. Mauri,et al.  First-principles calculation of 17O and 25Mg NMR shieldings in MgO at finite temperature: rovibrational effect in solids. , 2005, The journal of physical chemistry. B.

[15]  A. Jerschow From Nuclear Structure to the Quadrupolar NMR Interaction and High-Resolution Spectroscopy , 2005 .

[16]  F. Mauri,et al.  First-principles calculation of the 17O NMR parameters in Ca oxide and Ca aluminosilicates: the partially covalent nature of the Ca-O bond, a challenge for density functional theory. , 2004, Journal of the American Chemical Society.

[17]  F. Mauri,et al.  Ab Initio Calculations of NMR Parameters of Highly Coordinated Oxygen Sites in Aluminosilicates , 2004 .

[18]  M. Payne,et al.  Theoretical Investigation of Oxygen-17 NMR Shielding and Electric Field Gradients in Glutamic Acid Polymorphs , 2004 .

[19]  F. Mauri,et al.  Combined ab initio computational and experimental multinuclear solid‐state magnetic resonance study of phenylphosphonic acid , 2004, Magnetic resonance in chemistry : MRC.

[20]  Francesco Mauri,et al.  First-Principles Calculation of 17O, 29Si, and 23Na NMR Spectra of Sodium Silicate Crystals and Glasses , 2004 .

[21]  Francesco Mauri,et al.  Accurate first principles prediction of 17O NMR parameters in SiO2: assignment of the zeolite ferrierite spectrum. , 2003, Journal of the American Chemical Society.

[22]  Roderick E. Wasylishen,et al.  A revised experimental absolute magnetic shielding scale for oxygen , 2002 .

[23]  A. Putnis,et al.  Phase transition behaviour and equilibrium phase relations in the fast-ion conductor system Na3PO4 Na2SO4 , 2002 .

[24]  P. Pyykkö Spectroscopic nuclear quadrupole moments , 2001 .

[25]  F. Mauri,et al.  All-electron magnetic response with pseudopotentials: NMR chemical shifts , 2001, cond-mat/0101257.

[26]  Thomas Gregor,et al.  A comparison of methods for the calculation of NMR chemical shifts , 1999 .

[27]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[28]  K. Ruud,et al.  Rovibrational effects, temperature dependence, and isotope effects on the nuclear shielding tensors of water: A new 17 O absolute shielding scale , 1998 .

[29]  Peter Blaha,et al.  Electric-field-gradient calculations using the projector augmented wave method , 1998 .

[30]  Yingkai Zhang,et al.  Comment on “Generalized Gradient Approximation Made Simple” , 1998 .

[31]  Bernd G. Pfrommer,et al.  Ab Initio Theory of NMR Chemical Shifts in Solids and Liquids. , 1996, Physical review letters.

[32]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[33]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[34]  B. Meier,et al.  STRUCTURE INVESTIGATION ON ANHYDROUS DISODIUM HYDROGEN PHOSPHATE USING SOLID-STATE NMR AND X-RAY TECHNIQUES , 1995 .

[35]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[36]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[37]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[38]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[39]  R. Choudhary,et al.  A room-temperature neutron-diffraction study of NaH2PO4 , 1981 .

[40]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[41]  H. M. Ondik The structure of anhydrous sodium trimetaphosphate Na3P3O9, and the monohydrate, Na3P3O9.H2O , 1965 .

[42]  I. Lowe,et al.  Free Induction Decays of Rotating Solids , 1959 .

[43]  E. R. Andrew,et al.  Nuclear Magnetic Resonance Spectra from a Crystal rotated at High Speed , 1958, Nature.

[44]  W. C. Dickinson Dependence of the F$sup 19$ Nuclear Resonance Position on Chemical Compound , 1950 .

[45]  W. G. Proctor,et al.  The Dependence of a Nuclear Magnetic Resonance Frequency upon Chemical Compound , 1950 .

[46]  J. S. Frye High-Resolution NMR of Solids , 1990 .