Stochastic linear programming games with concave preferences

We study stochastic linear programming games: a class of stochastic cooperative games whose payoffs under any realization of uncertainty are determined by a specially structured linear program. These games can model a variety of settings, including inventory centralization and cooperative network fortification. We focus on the core of these games under an allocation scheme that determines how payoffs are distributed before the uncertainty is realized, and allows for arbitrarily different distributions for each realization of the uncertainty. Assuming that each player’s preferences over random payoffs are represented by a concave monetary utility functional, we prove that these games have a nonempty core. Furthermore, by establishing a connection between stochastic linear programming games, linear programming games and linear semi-infinite programming games, we show that an allocation in the core can be computed efficiently under some circumstances.

[1]  P. O. Lindberg Linear optimization and approximation: An introduction to the theoretical analysis and numerical treatment of semi-infinite programs: Volume 45 in: Applied Mathematical Sciences, Springer, Berlin, 1983, ix + 197 pages, DM48.00 , 1984 .

[2]  Toshihide Ibaraki,et al.  Algorithmic Aspects of the Core of Combinatorial Optimization Games , 1999, Math. Oper. Res..

[3]  Andreas Tsanakas,et al.  Risk Measures and Theories of Choice , 2003 .

[4]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[5]  Abraham Charnes,et al.  Prior Solutions: Extensions of Convex Nucleus Solutions to Chance-Constrained Games. , 1973 .

[6]  Alejandro Toriello,et al.  Technical Note - On Traveling Salesman Games with Asymmetric Costs , 2013, Oper. Res..

[7]  Xin Chen,et al.  Duality Approaches to Economic Lot‐Sizing Games , 2007 .

[8]  Peter Värbrand,et al.  On the nucleolus of the basic vehicle routing game , 1996, Math. Program..

[9]  Marco Slikker,et al.  Stability and monotonicity in newsvendor situations , 2012, Eur. J. Oper. Res..

[10]  Henk Norde,et al.  A general framework for cooperation under uncertainty , 2009, Oper. Res. Lett..

[11]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[12]  Moshe Shaked,et al.  The Newsvendor Game Has a Nonempty Core , 2002, Games Econ. Behav..

[13]  Guillermo Owen,et al.  On the core of linear production games , 1975, Math. Program..

[14]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[15]  Herbert Hamers,et al.  Economic Lot-Sizing Games , 2004, Eur. J. Oper. Res..

[16]  G. Yu,et al.  Min-Max Optimization of Several Classical Discrete Optimization Problems , 1998 .

[17]  Michel Denuit,et al.  Risk measurement with equivalent utility principles , 2006 .

[18]  Judith Timmer,et al.  Production , Manufacturing and Logistics Cooperation and game-theoretic cost allocation in stochastic inventory models with continuous review , 2013 .

[19]  Houra Mahmoudzadeh,et al.  A robust-CVaR optimization approach with application to breast cancer therapy , 2014, Eur. J. Oper. Res..

[20]  Jan Fransoo,et al.  Cooperation between multiple news-vendors with transshipments , 2005, Eur. J. Oper. Res..

[21]  M. A. López-Cerdá,et al.  Linear Semi-Infinite Optimization , 1998 .

[22]  Yao Zhao,et al.  A Multiproduct Risk-Averse Newsvendor with Law-Invariant Coherent Measures of Risk , 2011, Oper. Res..

[23]  Andreas S. Schulz,et al.  Sharing Supermodular Costs , 2010, Oper. Res..

[24]  Xin Chen,et al.  A Stochastic Programming Duality Approach to Inventory Centralization Games , 2007, Oper. Res..

[25]  Eitan Zemel,et al.  Totally Balanced Games and Games of Flow , 1982, Math. Oper. Res..

[26]  Lloyd S. Shapley,et al.  On balanced sets and cores , 1967 .

[27]  Moshe Dror,et al.  Cores of Inventory Centralization Games , 2000, Games Econ. Behav..

[28]  Stef Tijs,et al.  Traveling salesman games , 1992, Math. Program..

[29]  Meng Wu,et al.  The risk-averse newsvendor problem with random capacity , 2013, Eur. J. Oper. Res..

[30]  R. Branzei,et al.  Shapley-like values for interval bankruptcy games , 2003 .

[31]  Jun-ya Gotoh,et al.  Newsvendor solutions via conditional value-at-risk minimization , 2007, Eur. J. Oper. Res..

[32]  J. Suijs Price Uncertainty in Linear Production Situations , 2000 .

[33]  Jan Fransoo,et al.  Cooperation Between Multiple Newsvendors with Warehouses , 2008, Manuf. Serv. Oper. Manag..

[34]  Alexander Schied,et al.  Robust Preferences and Convex Measures of Risk , 2002 .

[35]  Justo Puerto,et al.  Avoiding unfairness of Owen allocations in linear production processes , 2012, Eur. J. Oper. Res..

[36]  Francisco R. Fernández,et al.  Set-valued cooperative games with fuzzy payoffs. The fuzzy assignment game , 2013, Eur. J. Oper. Res..

[37]  Jikai Zou,et al.  A primal-dual algorithm for computing a cost allocation in the core of economic lot-sizing games , 2012, Oper. Res. Lett..

[38]  Shaun S. Wang,et al.  Axiomatic characterization of insurance prices , 1997 .

[39]  Anja De Waegenaere,et al.  Cooperative games with stochastic payoffs , 1999, Eur. J. Oper. Res..

[40]  M. Frittelli,et al.  RISK MEASURES AND CAPITAL REQUIREMENTS FOR PROCESSES , 2006 .

[41]  Gerhard J. Woeginger,et al.  Operations Research Letters , 2011 .

[42]  P. Borm,et al.  Stochastic Cooperative Games: Superadditivity, Convexity, and Certainty Equivalents , 1999 .

[43]  Daniel Granot,et al.  Minimum cost spanning tree games , 1981, Math. Program..

[44]  Vito Fragnelli,et al.  Balanced games arising from infinite linear models , 1999, Math. Methods Oper. Res..

[45]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[46]  D. Tasche,et al.  On the coherence of expected shortfall , 2001, cond-mat/0104295.

[47]  Miguel A. Goberna,et al.  Sensitivity Analysis in Linear Semi-Infinite Programming via Partitions , 2010, Math. Oper. Res..

[48]  M. Yaari The Dual Theory of Choice under Risk , 1987 .

[49]  K. Glashoff,et al.  Linear Optimization and Approximation: An Introduction to the Theoretical Analysis and Numerical Treatment of Semi-infinite Programs , 1983 .

[50]  Alexander Shapiro,et al.  Coherent risk measures in inventory problems , 2007, Eur. J. Oper. Res..

[51]  Alberto Caprara,et al.  New techniques for cost sharing in combinatorial optimization games , 2010, Math. Program..

[52]  Arie Tamir,et al.  On the core of network synthesis games , 1991, Math. Program..

[53]  R. Branzei,et al.  Bankruptcy problems with interval uncertainty , 2008 .

[54]  D. Schmeidler Subjective Probability and Expected Utility without Additivity , 1989 .

[55]  Vito Fragnelli,et al.  On shortest path games , 2000, Math. Methods Oper. Res..

[56]  J. Quiggin Generalized expected utility theory : the rank-dependent model , 1994 .

[57]  L. Shapley,et al.  The assignment game I: The core , 1971 .