Single-Walled Black Phosphorus Nanotube as a NO2 Gas Sensor

[1]  Y. Prajapati,et al.  High-performance bimetallic surface plasmon resonance biochemical sensor using a black phosphorus–MXene hybrid structure , 2021, Applied Physics A.

[2]  Weiyuan Liang,et al.  Black phosphorus-based photothermal therapy with aCD47-mediated immune checkpoint blockade for enhanced cancer immunotherapy , 2020, Light: Science & Applications.

[3]  D. Fan,et al.  Eradication of tumor growth by delivering novel photothermal selenium-coated tellurium nanoheterojunctions , 2020, Science Advances.

[4]  Shaojun Guo,et al.  Recent Advances on Black Phosphorus for Biomedicine and Biosensing , 2019, Advanced Functional Materials.

[5]  Ashutosh Kumar Singh,et al.  Biocompatible and biodegradable inorganic nanostructures for nanomedicine: Silicon and black phosphorus , 2019, Nano Today.

[6]  Gil Nonato C. Santos,et al.  Solubility of aminotriethylene glycol functionalized single wall carbon nanotubes: A density functional based tight binding molecular dynamics study , 2019, J. Comput. Chem..

[7]  M. Yoosefian,et al.  Leucine/Pd-loaded (5,5) single-walled carbon nanotube matrix as a novel nanobiosensors for in silico detection of protein , 2018, Amino Acids.

[8]  Su‐Ting Han,et al.  Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices , 2017 .

[9]  Q. Qin,et al.  Self-assembly of a parallelogram black phosphorus ribbon into a nanotube , 2017, Scientific Reports.

[10]  Hee‐Tae Jung,et al.  Tunable Chemical Sensing Performance of Black Phosphorus by Controlled Functionalization with Noble Metals , 2017 .

[11]  Feng Yin,et al.  Black phosphorus quantum dot based novel siRNA delivery systems in human pluripotent teratoma PA-1 cells. , 2017, Journal of materials chemistry. B.

[12]  Martin Pumera,et al.  Black Phosphorus Rediscovered: From Bulk Material to Monolayers. , 2017, Angewandte Chemie.

[13]  Soo-Yeon Cho,et al.  Tunable Volatile-Organic-Compound Sensor by Using Au Nanoparticle Incorporation on MoS2. , 2017, ACS sensors.

[14]  I. Zaporotskova,et al.  Carbon nanotubes: Sensor properties. A review , 2016 .

[15]  Jihan Kim,et al.  Superior Chemical Sensing Performance of Black Phosphorus: Comparison with MoS2 and Graphene , 2016, Advanced materials.

[16]  Guifeng Chen,et al.  Prediction of the electronic structure of single-walled black phosphorus nanotubes. , 2016, Physical chemistry chemical physics : PCCP.

[17]  M. Venkata Kamalakar,et al.  Ab initio studies of phosphorene island single electron transistor , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  Xiaodong Zhang,et al.  Theoretical study of the NO, NO2, CO, SO2, and NH3 adsorptions on multi-diameter single-wall MoS2 nanotube , 2016 .

[19]  Y. Jung,et al.  Controlled Doping of Vacancy-Containing Few-Layer MoS2 via Highly Stable Thiol-Based Molecular Chemisorption. , 2015, ACS nano.

[20]  Junhong Chen,et al.  Ultrahigh sensitivity and layer-dependent sensing performance of phosphorene-based gas sensors , 2015, Nature Communications.

[21]  T. Hu,et al.  Geometry, electronic structures and optical properties of phosphorus nanotubes , 2015, Nanotechnology.

[22]  Jihan Kim,et al.  Highly Enhanced Gas Adsorption Properties in Vertically Aligned MoS2 Layers. , 2015, ACS nano.

[23]  Lei Shen,et al.  Electronic and transport properties of phosphorene nanoribbons , 2015 .

[24]  Sunhye Yang,et al.  Enhanced response and sensitivity of self-corrugated graphene sensors with anisotropic charge distribution , 2015, Scientific Reports.

[25]  Chongwu Zhou,et al.  Black phosphorus gas sensors. , 2015, ACS nano.

[26]  A. Fazzio,et al.  Van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating. , 2015, Physical Review Letters.

[27]  O. Malyi,et al.  Adsorption of metal adatoms on single-layer phosphorene. , 2015, Physical chemistry chemical physics : PCCP.

[28]  A. Zunger,et al.  Electric Field Induced Topological Phase Transition in Two-Dimensional Few-layer Black Phosphorus , 2014, 1411.3932.

[29]  Marcel Demarteau,et al.  Ambipolar phosphorene field effect transistor. , 2014, ACS nano.

[30]  F. Xia,et al.  Two-dimensional material nanophotonics , 2014, Nature Photonics.

[31]  Hee‐Tae Jung,et al.  Tunable volatile organic compounds sensor by using thiolated ligand conjugation on MoS2. , 2014, Nano letters.

[32]  Z. Ong,et al.  Strong Thermal Transport Anisotropy and Strain Modulation in Single-Layer Phosphorene , 2014, 1409.0974.

[33]  D. Coker,et al.  Oxygen defects in phosphorene. , 2014, Physical review letters.

[34]  Li Yang,et al.  Lattice Vibrational Modes and Raman Scattering Spectra of Strained Phosphorene , 2014, 1407.0736.

[35]  T. Frauenheim,et al.  Phosphorene as a Superior Gas Sensor: Selective Adsorption and Distinct I-V Response. , 2014, The journal of physical chemistry letters.

[36]  V. Tran,et al.  Scaling laws for the band gap and optical response of phosphorene nanoribbons , 2014, 1404.2247.

[37]  Qun Wei,et al.  Superior mechanical flexibility of phosphorene and few-layer black phosphorus , 2014, 1403.7882.

[38]  Xiaojun Wu,et al.  Phosphorene Nanoribbons, Phosphorus Nanotubes, and van der Waals Multilayers , 2014, 1403.6209.

[39]  Jun Dai,et al.  Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells. , 2014, The journal of physical chemistry letters.

[40]  Xihong Peng,et al.  Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene , 2014, 1403.3771.

[41]  G. Steele,et al.  Isolation and characterization of few-layer black phosphorus , 2014, 1403.0499.

[42]  Rostislav A. Doganov,et al.  Electric field effect in ultrathin black phosphorus , 2014, 1402.5718.

[43]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics , 2014, Nature Communications.

[44]  X. Kong,et al.  High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus , 2014, Nature Communications.

[45]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[46]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[47]  Shengli Chang,et al.  Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field , 2013, Nanoscale Research Letters.

[48]  W. Kang,et al.  Gas adsorption on MoS2 monolayer from first-principles calculations , 2013, 1306.6751.

[49]  Min Yu,et al.  Accurate and efficient algorithm for Bader charge integration. , 2010, The Journal of chemical physics.

[50]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[51]  Edward Sanville,et al.  Improved grid‐based algorithm for Bader charge allocation , 2007, J. Comput. Chem..

[52]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[53]  G. Henkelman,et al.  A fast and robust algorithm for Bader decomposition of charge density , 2006 .

[54]  G. Seifert,et al.  Theoretical prediction of phosphorus nanotubes , 2000 .

[55]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[56]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[57]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[58]  J. Mintmire,et al.  Stability and electronic structure of phosphorus nanotubes , 2004 .