On the stationary distribution of self-sustained oscillators around bifurcation points

A double expansion in powers of the damping coefficient and noise intensity is shown to be a powerful method for obtaining the stationary distribution of systems that after rescaling become weakly damped conservative ones. Systems undergoing Hopf bifurcations belong to this class. As an illustrative example, the generalized van der Pol oscillator is considered around its bifurcation point. A calculation is carried out up to third order in both the noise intensity and the bifurcation parameter (damping coefficient).

[1]  M. Freidlin,et al.  ON SMALL RANDOM PERTURBATIONS OF DYNAMICAL SYSTEMS , 1970 .

[2]  Graham,et al.  Nonequilibrium potentials for local codimension-2 bifurcations of dissipative flows. , 1987, Physical review. A, General physics.

[3]  K. Steinmüller HAKEN, H.: Synergetics. An Introduction. Springer‐Verlag, Berlin‐Heidelberg‐New York 1977. XII, 325 S., 125 Abb., DM 72.—. , 1978 .

[4]  Jack K. Cohen,et al.  A Ray Method for the Asymptotic Solution of the Diffusion Equation , 1967 .

[5]  Non-equilibrium potentials and stationary probability distributions of some dissipative models without manifest detailed balance , 1983 .

[6]  Graham,et al.  Nonequilibrium potential for coexisting attractors. , 1986, Physical review. A, General physics.

[7]  Multivariate stochastic processes with exponentially correlated broadband noise. , 1985, Physical review. A, General physics.

[8]  H. Risken,et al.  Eigenvalues and eigenfunctions of the Fokker-Planck equation for the extremely underdamped Brownian motion in a double-well potential , 1985 .

[9]  Werner Ebeling,et al.  Influence of Noise on Duffing‐Van der Pol Oscillators , 1986 .

[10]  Giovanna Jona-Lasinio,et al.  Large fluctution for a non linear heat equation with noise , 1982 .

[11]  R. Graham Macroscopic potentials, bifurcations and noise in dissipative systems , 1987 .

[12]  Max-Olivier Hongler,et al.  Hard mode stationary states generated by fluctuations , 1978 .

[13]  D. Ludwig Persistence of Dynamical Systems under Random Perturbations , 1975 .

[14]  R. L. Stratonovich,et al.  Topics in the theory of random noise , 1967 .

[15]  Dispersive Optical Bistability with Fluctuations , 1981 .

[16]  Robert Graham,et al.  On the weak-noise limit of Fokker-Planck models , 1984 .

[17]  Werner Ebeling,et al.  Strukturbildung bei irreversiblen Prozessen : e. Einf. in d. Theorie dissipativer Strukturen , 1976 .

[18]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[19]  P. Hänggi Escape from a Metastable State , 1986 .

[20]  R. Graham,et al.  Probability density of the Lorenz model , 1983 .

[21]  Graham,et al.  Weak-noise limit of Fokker-Planck models and nondifferentiable potentials for dissipative dynamical systems. , 1985, Physical review. A, General physics.

[22]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[23]  Weak-noise in nondissipative periodic systems , 1986 .

[24]  P. J. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[25]  Bernard J. Matkowsky,et al.  Diffusion Across Characteristic Boundaries , 1982 .

[26]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[27]  Karl Heinz Hoffmann,et al.  The Hopf bifurcation of twodimensional systems under the influence of one external noise source , 1982 .

[28]  G. Nicolis,et al.  Stochastic analysis of symmetry-breaking bifurcations: Master equation approach , 1984 .

[29]  Peter Hänggi,et al.  Stochastic processes: Time evolution, symmetries and linear response , 1982 .

[30]  Emil Wolf,et al.  COHERENCE AND QUANTUM OPTICS , 1973 .

[31]  Robert Graham,et al.  Existence of a potential for dissipative dynamical systems , 1984 .

[32]  G. Nicolis,et al.  A new method of analysis of the effect of weak colored noise in nonlinear dynamical systems , 1987 .

[33]  R. Kubo,et al.  Fluctuation and relaxation of macrovariables , 1973 .

[34]  H. Haken,et al.  Generalized thermodynamic potential for Markoff systems in detailed balance and far from thermal equilibrium , 1971 .

[35]  Lutz Schimansky-Geier,et al.  Noise induced transitions due to external additive noise , 1985 .

[36]  Integrability of Hamiltonians associated with Fokker-Planck equations. , 1985, Physical review. A, General physics.

[37]  Balth. van der Pol,et al.  VII. Forced oscillations in a circuit with non-linear resistance. (Reception with reactive triode) , 1927 .

[38]  Ju I Kifer ON SMALL RANDOM PERTURBATIONS OF SOME SMOOTH DYNAMICAL SYSTEMS , 1974 .

[39]  H. Jauslin,et al.  Melnikov's criterion for nondifferentiable weak-noise potentials , 1986 .

[40]  C. Broeck,et al.  Asymptotic properties of coupled nonlinear langevin equations in the limit of weak noise. II: Transition to a limit cycle , 1982 .