Thermal design of multi-fin Ga2O3 vertical transistors

Ultra-wide bandgap β-gallium oxide (Ga2O3) vertical device technologies are of significant interest in the context of the development of next-generation kV-range power switching devices. In this work, thermal analysis of vertical fin channel-based metal–oxide–semiconductor field-effect transistors (or fin field-effect transistors—FinFETs) was performed using infrared thermal microscopy and coupled electro-thermal modeling. FinFETs with different fin width and channel spacing were characterized to study the thermal design trade-off when attempting to minimize the footprint of multi-fin FinFET arrays. A 50 × 50 μm2 scaled FinFET cell array exhibited an ∼23× higher temperature rise as compared to a 5-fin device. Devices with different orientations were fabricated and characterized. By rotating the fin channel aligned along the [010] direction by 90o, the channel temperature rise reduced by 30%, due to the anisotropy of the Ga2O3 thermal conductivity (κ). Electro-thermal modeling shows that a 20% reduction in the temperature rise is possible by fabricating devices on a (010)-oriented substrate as compared to the tested devices built on a (001) substrate. These results indicate the importance of the electro-thermal co-design process for Ga2O3 vertical FinFET cell arrays.

[1]  Robert H. Montgomery,et al.  Thermal Management of β-Ga₂O₃ Current Aperture Vertical Electron Transistors , 2021, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[2]  D. Ji,et al.  Electro-Thermal Investigation of GaN Vertical Trench MOSFETs , 2021, IEEE Electron Device Letters.

[3]  Robert H. Montgomery,et al.  Thermal management strategies for gallium oxide vertical trench-fin MOSFETs , 2021 .

[4]  C. McGray,et al.  Electro-thermal co-design of β-(AlxGa1-x)2O3/Ga2O3 modulation doped field effect transistors , 2020, Applied Physics Letters.

[5]  Robert H. Montgomery,et al.  Modeling and analysis for thermal management in gallium oxide field-effect transistors , 2020 .

[6]  F. Ren,et al.  Asymmetrical Contact Geometry to Reduce Forward-Bias Degradation in β-Ga2O3 Rectifiers , 2020 .

[7]  T. Beechem,et al.  Nanoscale electro-thermal interactions in AlGaN/GaN high electron mobility transistors , 2020, Journal of Applied Physics.

[8]  C. Nordquist,et al.  Device-Level Thermal Management of Gallium Oxide Field-Effect Transistors , 2019, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[9]  S. Lodha,et al.  $\beta$ -Ga2O3 Delta-Doped Field-Effect Transistors With Current Gain Cutoff Frequency of 27 GHz , 2019, IEEE Electron Device Letters.

[10]  Ronggui Yang,et al.  Three-dimensional anisotropic thermal conductivity tensor of single crystalline β-Ga2O3 , 2018, Applied Physics Letters.

[11]  S. Dhar,et al.  Thermal characterization of gallium oxide Schottky barrier diodes. , 2018, The Review of scientific instruments.

[12]  Zexuan Zhang,et al.  Breakdown mechanism in 1 kA/cm2 and 960 V E-mode β-Ga2O3 vertical transistors , 2018, Applied Physics Letters.

[13]  Saurabh Lodha,et al.  Demonstration of β-(AlxGa1-x)2O3/Ga2O3 double heterostructure field effect transistors , 2018, Applied Physics Letters.

[14]  Huili Grace Xing,et al.  Enhancement-Mode Ga2O3 Vertical Transistors With Breakdown Voltage >1 kV , 2018, IEEE Electron Device Letters.

[15]  Jared M. Johnson,et al.  Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1-x)2O3/Ga2O3 heterostructures , 2018 .

[16]  R. Dupuis,et al.  Thermal characterization of gallium nitride p-i-n diodes , 2018 .

[17]  S. Yamakoshi,et al.  Depletion-mode vertical Ga2O3 trench MOSFETs fabricated using Ga2O3 homoepitaxial films grown by halide vapor phase epitaxy , 2017 .

[18]  M. Baldini,et al.  Recent progress in the growth of β-Ga2O3 for power electronics applications , 2017 .

[19]  Jared M. Johnson,et al.  Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor , 2017, 1706.09492.

[20]  J. Muth,et al.  Anisotropic thermal conductivity of β-Ga2O3 at elevated temperatures: Effect of Sn and Fe dopants , 2017 .

[21]  Akito Kuramata,et al.  Recent progress in Ga2O3 power devices , 2016 .

[22]  D. Jena,et al.  Anisotropic thermal conductivity in single crystal β-gallium oxide , 2014, 1412.7472.

[23]  Reinhard Uecker,et al.  On the bulk β-Ga2O3 single crystals grown by the Czochralski method , 2014 .

[24]  Hideo Aida,et al.  Growth of β-Ga2O3 Single Crystals by the Edge-Defined, Film Fed Growth Method , 2008 .

[25]  Noboru Ichinose,et al.  Large-size β-Ga2O3 single crystals and wafers , 2004 .

[26]  Hideo Hosono,et al.  Deep-ultraviolet transparent conductive β-Ga2O3 thin films , 2000 .

[27]  Peter Reiche,et al.  Czochralski grown Ga2O3 crystals , 2000 .

[28]  H. H. Tippins Optical Absorption and Photoconductivity in the Band Edge of β − Ga 2 O 3 , 1965 .