Experimental evaluation of ecological principles to understand and modulate the outcome of bacterial strain competition in gut microbiomes

[1]  Ryan D. Crawford,et al.  Phenotypic and Genomic Diversification in Complex Carbohydrate-Degrading Human Gut Bacteria , 2022, mSystems.

[2]  J. Walter,et al.  Intraspecies strain exclusion, antibiotic pretreatment, and donor selection control microbiota engraftment after fecal transplantation , 2021, medRxiv.

[3]  Ryan D. Crawford,et al.  Phenotypic and genomic diversification in complex carbohydrate degrading human gut bacteria , 2021, bioRxiv.

[4]  P. Manghi,et al.  Genomic diversity and ecology of human-associated Akkermansia species in the gut microbiome revealed by extensive metagenomic assembly , 2021, Genome biology.

[5]  Lawrence A. David,et al.  Genotypic and Phenotypic Diversity among Human Isolates of Akkermansia muciniphila , 2021, mBio.

[6]  P. Manghi,et al.  Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3 , 2020, bioRxiv.

[7]  A. Benson,et al.  Stearidonic-Enriched Soybean Oil Modulates Obesity, Glucose Metabolism, and Fatty Acid Profiles Independently of Akkermansia Muciniphila. , 2020, Molecular nutrition & food research.

[8]  N. Lanthier,et al.  Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients , 2020, Gut.

[9]  V. Anttila,et al.  Minor Effect of Antibiotic Pre-treatment on the Engraftment of Donor Microbiota in Fecal Transplantation in Mice , 2019, Front. Microbiol..

[10]  Z. Hosseinidoust,et al.  Phage Therapy with a Focus on the Human Microbiota , 2019, Antibiotics.

[11]  J. Badger,et al.  Laboratory mice born to wild mice have natural microbiota and model human immune responses , 2019, Science.

[12]  Liping Zhao,et al.  Strain-Specific Anti-inflammatory Properties of Two Akkermansia muciniphila Strains on Chronic Colitis in Mice , 2019, Front. Cell. Infect. Microbiol..

[13]  Gaochao Dong,et al.  Gut Microbiota Shapes the Efficiency of Cancer Therapy , 2019, Front. Microbiol..

[14]  Gayetri Ramachandran,et al.  Editing the microbiome the CRISPR way , 2019, Philosophical Transactions of the Royal Society B.

[15]  T. Fukami,et al.  Applying modern coexistence theory to priority effects , 2019, Proceedings of the National Academy of Sciences.

[16]  Feng Li,et al.  MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies , 2019, PeerJ.

[17]  K. Clément,et al.  Comparative Evaluation of Microbiota Engraftment Following Fecal Microbiota Transfer in Mice Models: Age, Kinetic and Microbial Status Matter , 2019, Front. Microbiol..

[18]  G. Banna,et al.  Gut Microbiota and Cancer: From Pathogenesis to Therapy , 2019, Cancers.

[19]  I-Min A. Chen,et al.  Genomes OnLine database (GOLD) v.7: updates and new features , 2018, Nucleic Acids Res..

[20]  Silvio C. E. Tosatto,et al.  The Pfam protein families database in 2019 , 2018, Nucleic Acids Res..

[21]  I-Min A. Chen,et al.  IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes , 2018, Nucleic Acids Res..

[22]  S. Wingett,et al.  FastQ Screen: A tool for multi-genome mapping and quality control. , 2018, F1000Research.

[23]  A. Benson,et al.  Experimental evaluation of the importance of colonization history in early-life gut microbiota assembly , 2018, eLife.

[24]  Duy Tin Truong,et al.  Mother-to-Infant Microbial Transmission from Different Body Sites Shapes the Developing Infant Gut Microbiome , 2018, Cell host & microbe.

[25]  C. Knauf,et al.  Gut Microbes and Health: A Focus on the Mechanisms Linking Microbes, Obesity, and Related Disorders , 2018, Obesity.

[26]  P. Bork,et al.  Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies , 2018, Nature Microbiology.

[27]  Luis Pedro Coelho,et al.  Selective maternal seeding and environment shape the human gut microbiome , 2018, Genome research.

[28]  D. Gevers,et al.  Strain Tracking Reveals the Determinants of Bacterial Engraftment in the Human Gut Following Fecal Microbiota Transplantation. , 2018, Cell host & microbe.

[29]  I. Martínez,et al.  To engraft or not to engraft: an ecological framework for gut microbiome modulation with live microbes. , 2018, Current opinion in biotechnology.

[30]  E. Rimm,et al.  Stability of the human faecal microbiome in a cohort of adult men , 2018, Nature Microbiology.

[31]  N. Ajami,et al.  Wild Mouse Gut Microbiota Promotes Host Fitness and Improves Disease Resistance , 2017, Cell.

[32]  B. Shi,et al.  Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics , 2017, Cell & Bioscience.

[33]  C. Metcalf,et al.  The microbiome beyond the horizon of ecological and evolutionary theory , 2017, Nature Ecology & Evolution.

[34]  G. Borisy,et al.  Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice , 2017, Proceedings of the National Academy of Sciences.

[35]  Ole Lund,et al.  RUCS: rapid identification of PCR primers for unique core sequences , 2017, Bioinform..

[36]  A. Benson,et al.  A gut pathobiont synergizes with the microbiota to instigate inflammatory disease marked by immunoreactivity against other symbionts but not itself , 2017, bioRxiv.

[37]  Eoin L. Brodie,et al.  Probabilistic Invasion Underlies Natural Gut Microbiome Stability , 2017, Current Biology.

[38]  W. D. de Vos,et al.  Genome-Scale Model and Omics Analysis of Metabolic Capacities of Akkermansia muciniphila Reveal a Preferential Mucin-Degrading Lifestyle , 2017, Applied and Environmental Microbiology.

[39]  Z. Cao,et al.  Preparing the Gut with Antibiotics Enhances Gut Microbiota Reprogramming Efficiency by Promoting Xenomicrobiota Colonization , 2017, Front. Microbiol..

[40]  Weston R. Whitaker,et al.  Tunable Expression Tools Enable Single-Cell Strain Distinction in the Gut Microbiome , 2017, Cell.

[41]  C. Szymanski,et al.  Experimental Evaluation of Host Adaptation of Lactobacillus reuteri to Different Vertebrate Species , 2017, Applied and Environmental Microbiology.

[42]  A. Benson,et al.  A real-time PCR assay for accurate quantification of the individual members of the Altered Schaedler Flora microbiota in gnotobiotic mice. , 2017, Journal of microbiological methods.

[43]  I. Martínez,et al.  Resistant starch can improve insulin sensitivity independently of the gut microbiota , 2017, Microbiome.

[44]  Duy Tin Truong,et al.  Microbial strain-level population structure and genetic diversity from metagenomes , 2017, Genome research.

[45]  Philipp C. Münch,et al.  Genome-guided design of a defined mouse microbiota that 1 confers colonization resistance against Salmonella enterica 2 serovar Typhimurium 3 , 2018 .

[46]  Jan P. Meier-Kolthoff,et al.  Correction: Corrigendum: The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota , 2016, Nature Microbiology.

[47]  Benjamin M Hillmann,et al.  Stable Engraftment of Bifidobacterium longum AH1206 in the Human Gut Depends on Individualized Features of the Resident Microbiome. , 2016, Cell host & microbe.

[48]  Dan Knights,et al.  Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice , 2016, Nature Microbiology.

[49]  Jan P. Meier-Kolthoff,et al.  The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota , 2016, Nature Microbiology.

[50]  F. Bäckhed,et al.  Diet–microbiota interactions as moderators of human metabolism , 2016, Nature.

[51]  Edoardo Pasolli,et al.  Machine Learning Meta-analysis of Large Metagenomic Datasets: Tools and Biological Insights , 2016, PLoS Comput. Biol..

[52]  P. Bork,et al.  Durable coexistence of donor and recipient strains after fecal microbiota transplantation , 2016, Science.

[53]  R. Gomis,et al.  Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice , 2015, Scientific Reports.

[54]  W. D. de Vos,et al.  Akkermansia muciniphila and Helicobacter typhlonius modulate intestinal tumor development in mice. , 2015, Carcinogenesis.

[55]  E. Riley,et al.  The Gut Microbiota of Wild Mice , 2015, PloS one.

[56]  P. Schloss,et al.  Antibiotic-Induced Alterations of the Murine Gut Microbiota and Subsequent Effects on Colonization Resistance against Clostridium difficile , 2015, mBio.

[57]  Natalia N. Ivanova,et al.  Microbial species delineation using whole genome sequences , 2015, Nucleic acids research.

[58]  Timothy L. Tickle,et al.  Compact graphical representation of phylogenetic data and metadata with GraPhlAn , 2015, PeerJ.

[59]  Chris Sander,et al.  Precision microbiome restoration of bile acid-mediated resistance to Clostridium difficile , 2014, Nature.

[60]  R. Knight,et al.  Meta‐analyses of human gut microbes associated with obesity and IBD , 2014, FEBS letters.

[61]  Daniel M. Saman,et al.  Recovery of the Gut Microbiome following Fecal Microbiota Transplantation , 2014, mBio.

[62]  Klaus Ley,et al.  Bacterial colonization factors control specificity and stability of the gut microbiota , 2013, Nature.

[63]  J. Clemente,et al.  The Long-Term Stability of the Human Gut Microbiota , 2013 .

[64]  Na-Ri Shin,et al.  An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice , 2013, Gut.

[65]  Lucie Geurts,et al.  Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity , 2013, Proceedings of the National Academy of Sciences.

[66]  A. Walker,et al.  Therapeutic modulation of intestinal dysbiosis. , 2013, Pharmacological research.

[67]  Rafael Bargiela,et al.  Gut microbiota disturbance during antibiotic therapy: a multi-omic approach , 2012, Gut.

[68]  Emma Allen-Vercoe,et al.  Toward an Understanding of Changes in Diversity Associated with Fecal Microbiome Transplantation Based on 16S rRNA Gene Deep Sequencing , 2012, mBio.

[69]  Joaquín Dopazo,et al.  Qualimap: evaluating next-generation sequencing alignment data , 2012, Bioinform..

[70]  D. Relman,et al.  The Application of Ecological Theory Toward an Understanding of the Human Microbiome , 2012, Science.

[71]  Bernard Henrissat,et al.  Recognition and Degradation of Plant Cell Wall Polysaccharides by Two Human Gut Symbionts , 2011, PLoS biology.

[72]  J. Walter,et al.  The human gut microbiome: ecology and recent evolutionary changes. , 2011, Annual review of microbiology.

[73]  Min Zhang,et al.  The Evolution of Host Specialization in the Vertebrate Gut Symbiont Lactobacillus reuteri , 2011, PLoS genetics.

[74]  Michael A McGuckin,et al.  Mucolytic Bacteria With Increased Prevalence in IBD Mucosa Augment In Vitro Utilization of Mucin by Other Bacteria , 2010, The American Journal of Gastroenterology.

[75]  C. von Mering,et al.  Like Will to Like: Abundances of Closely Related Species Can Predict Susceptibility to Intestinal Colonization by Pathogenic and Commensal Bacteria , 2010, PLoS pathogens.

[76]  Sean D. Hooper,et al.  Gene Context Analysis in the Integrated Microbial Genomes (IMG) Data Management System , 2009, PloS one.

[77]  Janneke HilleRisLambers,et al.  The importance of niches for the maintenance of species diversity , 2009, Nature.

[78]  J. Cavender-Bares,et al.  The merging of community ecology and phylogenetic biology. , 2009, Ecology letters.

[79]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[80]  陈奕欣,et al.  The Universal Protein Resource (UniProt) , 2007, Nucleic Acids Res..

[81]  Peter B Adler,et al.  A niche for neutrality. , 2007, Ecology letters.

[82]  Mats Gyllenberg,et al.  Competitive exclusion and limiting similarity: a unified theory. , 2006, Theoretical population biology.

[83]  W. D. de Vos,et al.  Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. , 2004, International journal of systematic and evolutionary microbiology.

[84]  F. Blattner,et al.  Mauve: multiple alignment of conserved genomic sequence with rearrangements. , 2004, Genome research.

[85]  D. Xuan,et al.  Pharmacodynamic Assessment of Clarithromycin in a Murine Model of Pneumococcal Pneumonia , 2002, Antimicrobial Agents and Chemotherapy.

[86]  P. Chesson Mechanisms of Maintenance of Species Diversity , 2000 .

[87]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[88]  G. Forstner Signal transduction, packaging and secretion of mucins. , 1995, Annual review of physiology.

[89]  S. Levy,et al.  Competition between congenic Escherichia coli K-12 strains in vivo , 1981, Infection and immunity.

[90]  D. Kothari,et al.  Comparison of antibiotic discs from different sources. , 1975, Journal of clinical pathology.

[91]  G. Hardin The competitive exclusion principle. , 1960, Science.