Thermochemistry of Nanomaterials

The term “nanoparticle” or “nanomaterial” is somewhat difficult to define rigorously. A nanoparticle has dimensions somewhere in the nanometer regime, that is, a diameter of 1 to 100 nm. Thus nanoparticles span the range from clusters of atoms in solution at the small end to colloidal particles at the large end. Nanoparticles may be amorphous or consist of only a few unit cells of crystalline material. A very large fraction of their atoms are near the surface, see Figure 1⇓. Nanoparticles may be surrounded by vacuum, a gaseous atmosphere, water, or other fluid. In the natural environment, nanoparticles are generally heavily hydrated. Figure 1. Fraction of atoms within 0.5 nm of the surface of a nanoparticle as a function of its diameter. [Used by permission of the editor of Materials Research Society Symp Proc , from Navrotsky (1997), Fig. 3, p. 10.] A nanomaterial can be loosely defined to be any material containing heterogeneity at the nanoscale in one or more dimensions. In the broadest sense, then, the following are nanomaterials: phase-separated glasses or crystals with domains in the nanoregime, zeolites and mesoporous materials with pores of nanometer dimensions, clays with nanometer sized alternations of aluminosilicate layers and interlayer hydrated cations, and nanoscale leach layers at the mineral-water interface. A broad definition in the sense above emphasizes the commonality of phenomena at the nanoscale. In essence “if it quacks like a nanomaterial, it is one.” A nanomaterial is any state of condensed matter whose properties diverge significantly from those of the bulk or of molecules by the emergence of new phenomena not seen at smaller or larger scales. Such properties are related to nanoscale heterogeneity created by pervasive surfaces, interfaces, chemical variability, or pores. The exact size at which this happens depends both on the system and the property …

[1]  Michael J. Paskowitz,et al.  Energetics of X-ray-amorphous zirconia and the role of surface energy in its formation , 2000 .

[2]  J. Schott,et al.  Thermodynamic properties of iron oxides and hydroxides; I, Surface and bulk thermodynamic properties of goethite (alpha -FeOOH) up to 500 K , 1994 .

[3]  J. A. Kittrick,et al.  Relative Solubility of Corundum, Gibbsite, Boehmite, and Diaspore at Standard State Conditions , 1988 .

[4]  Alexandra Navrotsky,et al.  Stability of Monoclinic and Orthorhombic Zirconia: Studies by High‐Pressure Phase Equilibria and Calorimetry , 1991 .

[5]  A. Navrotsky,et al.  Energetics of low-temperature polymorphs of manganese dioxide and oxyhydroxide , 1997 .

[6]  S. Błoński,et al.  Molecular dynamics simulations of a-alumina and ?-alumina surfaces , 1993 .

[7]  D. L. Dish,et al.  Equilibrium in the clinoptilolite-H2O system , 1996 .

[8]  H. V. Bekkum,et al.  A consistent molecular mechanics force field for all-silica zeolites , 1992 .

[9]  W. Casey,et al.  Surface Enthalpy of Boehmite , 2000 .

[10]  A. Navrotsky,et al.  Thermochemistry of Framework and Layer Manganese Dioxide Related Phases , 1998 .

[11]  H. Green Metastable growth of coesite in highly strained quartz , 1972 .

[12]  M. P. Tosi,et al.  Cohesion of Ionic Solids in the Born Model , 1964 .

[13]  J. Post Crystal structures of manganese oxide minerals , 1992 .

[14]  R. Davey,et al.  The morphology of α-Al2O3 and α-Fe2O3: The importance of surface relaxation , 1987 .

[15]  A. Navrotsky,et al.  Thermochemistry of the new silica polymorph moganite , 1996 .

[16]  A. Navrotsky,et al.  ENERGETICS OF STABLE AND METASTABLE LOW-TEMPERATURE IRON OXIDES AND OXYHYDROXIDES , 1998 .

[17]  C. Rao KINETICS AND THERMODYNAMICS OF THE CRYSTAL STRUCTURE TRANSFORMATION OF SPECTROSCOPICALLY PURE ANATASE TO RUTILE , 1961 .

[18]  A. Navrotsky,et al.  A molecular orbital study of bond length and angle variations in framework structures , 1985 .

[19]  Jillian F. Banfield,et al.  Enhanced adsorption of molecules on surfaces of nanocrystalline particles , 1999 .

[20]  A. Lasaga,et al.  The effect of dislocation density on the dissolution rate of quartz , 1990 .

[21]  O. J. Kleppa,et al.  Transformation Enthalpies of the TiO2 Polymorphs , 1979 .

[22]  G. A. Parks,et al.  Dynamic interactions of dissolution, surface adsorption, and precipitation in an aging cobalt(II)-clay-water system , 1999 .

[23]  A. C. Victor Effect of Particle Size on Low‐Temperature Heat Capacities , 1962 .

[24]  A. Navrotsky,et al.  Thermodynamic Properties of Manganese Oxides , 1996 .

[25]  S. Suib,et al.  A Review of Porous Manganese Oxide Materials , 1998 .

[26]  J. Banfield,et al.  Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation , 2000 .

[27]  Brown,et al.  Surface Precipitation of Co(II)(aq) on Al2O3 , 1997, Journal of colloid and interface science.

[28]  Alexandra Navrotsky,et al.  Nanomaterials in the Environment, Agriculture, and Technology (NEAT) , 2000 .

[29]  R. Dovesi,et al.  Ab initio characterization of the (0001) and (101̄0) crystal faces of α-alumina , 1989 .

[30]  J. Banfield,et al.  TEM investigation of Lewiston, Idaho, fibrolite: Microstructure and grain boundary energetics , 1999 .

[31]  A. Navrotsky Progress and new directions in high temperature calorimetry revisited , 1997 .

[32]  M. Nicholas,et al.  Surface and interfacial properties of stoichiometric uranium dioxide , 1973 .

[33]  R. Kirkpatrick,et al.  Nanocrystalline Spinel from Freeze-Dried Nitrates: Synthesis, Energetics of Product Formation, and Cation Distribution , 1998 .

[34]  R. A. Robie,et al.  Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (10[5] pascals) pressure and at higher temperatures , 1995 .

[35]  R. Taylor,et al.  The rapid formation of crystalline double hydroxy salts and other compounds by controlled hydrolysis , 1984, Clay Minerals.

[36]  R. Schuiling,et al.  Stability relations of some titanium-minerals (sphene, perovskite, rutile, anatase) , 1967 .

[37]  O. J. Kleppa,et al.  Enthalpy of the Anatase‐Rutile Transformation , 1967 .

[38]  R. Ewing,et al.  Energetics of radiation damage in natural zircon (ZrSiO4) , 1994 .

[39]  A. Rohl,et al.  Atomistic modelling of gibbsite: surface structure and morphology , 2000 .

[40]  J. Banfield,et al.  Thermodynamic analysis of phase stability of nanocrystalline titania , 1998 .

[41]  W. Kingery,et al.  Surface Tension of Some Liquid Oxides and Their Temperature Coefficients , 1959 .

[42]  A. Clearfield,et al.  Crystalline Hydrous Zirconia , 1964 .

[43]  N. Wu,et al.  Thermodynamic stability of tetragonal zirconia nanocrystallites , 2001 .

[44]  S. Sen,et al.  Energetics and structural changes associated with phase separation and crystallization in lithium silicate glasses , 1994 .

[45]  A. Navrotsky,et al.  High-silica zeolites: a relationship between energetics and internal surface areas , 2002 .

[46]  G. Kramer,et al.  Zeolites versus Aluminosilicate Clusters: The Validity of a Local Description , 1991 .

[47]  J. Ying,et al.  Structural Evolution of Colloidal Silica Gels to Glass , 1993 .

[48]  A. Navrotsky,et al.  Effects of Increased Surface Area and Chemisorbed H2O on the Relative Stability of Nanocrystalline γ-Al2O3 and α-Al2O3 , 1997 .

[49]  R. Wintsch,et al.  The effect of dislocation density on the aqueous solubility of quartz and some geologic implications: A theoretical approach , 1985 .

[50]  N. Wu,et al.  Enhanced Phase Stability for Tetragonal Zirconia in Precipitation Synthesis , 2000 .

[51]  J. Banfield,et al.  UNDERSTANDING POLYMORPHIC PHASE TRANSFORMATION BEHAVIOR DURING GROWTH OF NANOCRYSTALLINE AGGREGATES: INSIGHTS FROM TIO2 , 2000 .

[52]  B. S. Hemingway,et al.  Variation of the enthalpy of solution of quartz in aqueous HF as a function of sample particle size , 1995 .

[53]  R. Garvie,et al.  Stabilization of the tetragonal structure in zirconia microcrystals , 1978 .

[54]  M. J. Gillan,et al.  First-principles molecular dynamics simulation of water dissociation on TiO2 (110) , 1996 .

[55]  A. Navrotsky,et al.  Thermochemistry and Structure of Model Waste Glass Compositions , 1989 .

[56]  J. Turkevich,et al.  Solubility of fine particles of strontium sulfate , 1960 .

[57]  R. Garvie THE OCCURRENCE OF METASTABLE TETRAGONAL ZIRCONIA AS A CRYSTALLITE SIZE EFFECT , 1965 .

[58]  J. Banfield,et al.  New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles , 1999 .

[59]  D. Bish,et al.  A reinvestigation of takovite, a nickel aluminum hydroxy-carbonate of the pyroaurite group , 1977 .

[60]  J. Ying,et al.  Energetics and structure of sol-gel silicas , 1990 .

[61]  G. Cerofolini A model which allows for the Freundlich and the Dubinin-Radushkevich adsorption isotherms , 1975 .

[62]  Y. Matsui,et al.  Calorimetric and high-resolution transmission electron microscopy study of nanocrystallization in zirconia gel , 1999 .

[63]  S. R. Yoganarasimhan,et al.  Studies on the brookite-rutile transformation , 1961 .

[64]  J. Ying,et al.  Structural Evolution of Alkoxide Silica Gels to Glass: Effect of Catalyst pH , 1993 .

[65]  A. Navrotsky,et al.  Energetics of high surface area silicas , 1990 .

[66]  H. Suga,et al.  Particle size effect on the magnetic and surface heat capacities of β-Co(OH)2 and Ni(OH)2 crystals between 1.5 and 300 K☆ , 1969 .

[67]  I. Molodetsky,et al.  The Energetics of Cubic Zirconia from Solution Calorimetry of Yttria- and Calcia-Stabilized Zirconia , 1998 .

[68]  A. Navrotsky,et al.  Effect of Framework and Layer Substitution in Manganese Dioxide Related Phases on the Energetics , 2000 .

[69]  J. A. Morrison,et al.  The effect of particle size on the heat capacity of titanium dioxide , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[70]  Julian D. Gale,et al.  Theoretical Calculations on Silica Frameworks and Their Correlation with Experiment , 1994 .

[71]  J. Geus,et al.  The Quantity of Reduced Nickel in Synthetic Takovite: Effects of Preparation Conditions and Calcination Temperature , 1994 .

[72]  Y. Chiang,et al.  Measurements of Excess Enthalpy in Ultrafine-Grained Titanium Dioxide , 1995 .

[73]  L. Anovitz,et al.  Metastability in Near-Surface Rocks of Minerals in The System Al2O3-SiO2-H2O , 1991 .

[74]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[75]  Mark E. Davis,et al.  Thermochemistry of Pure-Silica Zeolites , 2000 .

[76]  A. Navrotsky,et al.  Surface Energies and Thermodynamic Phase Stability in Nanocrystalline Aluminas , 1997 .

[77]  Mark E. Davis,et al.  Little energetic limitation to microporous and mesoporous materials , 1995 .

[78]  O. J. Kleppa,et al.  Enthalpy of Transformation of a High-Pressure Polymorph of Titanium Dioxide to the Rutile Modification , 1967, Science.

[79]  V. Koptsik New group theoretical methods in physics of imperfect crystals and the theory of structure phase transitions , 1983 .

[80]  John A. Apps,et al.  Revised values for the thermodynamic properties of boehmite, AlO(OH), and related species and phases in the system Al-H-O , 1991 .

[81]  W. Brace,et al.  Some direct measurements of the surface energy of quartz and orthoclase , 1962 .

[82]  J. Banfield,et al.  Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2 , 1997 .

[83]  J. Tullis,et al.  Energy associated with dislocations: A calorimetric study using synthetic quartz , 1995 .

[84]  S. C. Parker,et al.  Atomistic simulation of the surface structure of theTiO2 polymorphs rutileand anatase , 1997 .

[85]  J. Carey,et al.  Calorimetric Measurement of the Enthalpy of Hydration of Clinoptilolite , 1997 .

[86]  Donald L. Sparks,et al.  The kinetics of mixed Ni-Al hydroxide formation on clay and aluminum oxide minerals: a time-resolved XAFS study , 1998 .

[87]  R. Iler The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica , 1979 .

[88]  Mark E. Davis,et al.  Thermochemical study of the stability of frameworks in high silica zeolites , 1993 .

[89]  M. Parrinello,et al.  Ab initio molecular dynamics of H2O adsorbed on solid MgO , 1995 .

[90]  Andreoni,et al.  The chemistry of water on alumina surfaces: reaction dynamics from first principles , 1998, Science.