Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes

Faraday rotation measurements using the current and next generation of low-frequency radio telescopes will provide a powerful probe of astronomical magnetic fields. However, achieving the full potential of these measurements requires accurate removal of the time-variable ionospheric Faraday rotation contribution. We present ionFR, a code that calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. ionFR uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. We describe applications of this code for the calibration of radio polarimetric observations, and demonstrate the high accuracy of its modeled ionospheric Faraday rotations using LOFAR pulsar observations. These show that we can accurately determine some of the highest-precision pulsar rotation measures ever achieved. Precision rotation measures can be used to monitor rotation measure variations - either intrinsic or due to the changing line-of-sight through the interstellar medium. This calibration is particularly important for nearby sources, where the ionosphere can contribute a significant fraction of the observed rotation measure. We also discuss planned improvements to ionFR, as well as the importance of ionospheric Faraday rotation calibration for the emerging generation of low-frequency radio telescopes, such as the SKA and its pathfinders.

[1]  I. Cognard,et al.  Pulsar searches of fermi unassociated sources with the effelsberg telescope , 2013, 1301.0359.

[2]  Andre Heck,et al.  Information Handling in Astronomy , 2012 .

[3]  M. Johnston-Hollitt,et al.  ON THE RELIABILITY OF POLARIZATION ESTIMATION USING ROTATION MEASURE SYNTHESIS , 2012, 1203.2706.

[4]  T. Ensslin,et al.  Faraday synthesis - The synergy of aperture and rotation measure synthesis , 2011, 1112.4175.

[5]  E. Araujo‐Pradere,et al.  A study of the strong linear relationship between the equatorial ionization anomaly and the prereversal E × B drift velocity at solar minimum , 2011 .

[6]  Jin-lin Han,et al.  The Faraday rotation in the pulsar magnetosphere , 2011, 1105.2602.

[7]  A. Noutsos,et al.  Observing pulsars and fast transients with LOFAR , 2011, 1104.1577.

[8]  Naomi McClure-Griffiths,et al.  MODELING THE MAGNETIC FIELD IN THE GALACTIC DISK USING NEW ROTATION MEASURE OBSERVATIONS FROM THE VERY LARGE ARRAY , 2010, 1012.2938.

[9]  M. Bailes,et al.  DSPSR: Digital Signal Processing Software for Pulsar Astronomy , 2010, Publications of the Astronomical Society of Australia.

[10]  G. Bernardi,et al.  Deep multi-frequency rotation measure tomography of the galaxy cluster A2255 , 2010, 1008.3530.

[11]  A. Chulliat,et al.  International Geomagnetic Reference Field: the eleventh generation , 2010 .

[12]  Stephen R. Green,et al.  Numerical parameter survey of non‐radiative black hole accretion: flow structure and variability of the rotation measure , 2010, 1011.5498.

[13]  U. Sydney,et al.  Polarized foreground removal at low radio frequencies using rotation measure synthesis: uncovering the signature of hydrogen reionization , 2010, 1011.2321.

[14]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[15]  D. O. Astronomy,et al.  The Westerbork SINGS survey - II Polarization, Faraday rotation, and magnetic fields , 2009, 0905.3995.

[16]  B. Stappers,et al.  Phase‐resolved Faraday rotation in pulsars , 2009, 0903.5511.

[17]  A. Bruyn,et al.  WSRT Faraday tomography of the Galactic ISM at λ ~ 0.86 m. I. The GEMINI data set at (l, b) = (181°, 20°) , 2009 .

[18]  D. Bilitza,et al.  International Reference Ionosphere 2007: Improvements and new parameters , 2008 .

[19]  M. Brentjens Deep Westerbork observations of Abell 2256 at 350 MHz , 2008, 0807.4467.

[20]  M. Kramer,et al.  New pulsar rotation measures and the Galactic magnetic field , 2008, 0803.0677.

[21]  Gary S. Bust,et al.  History, current state, and future directions of ionospheric imaging , 2008 .

[22]  Benjamin Stappers,et al.  PuMa-II: A Wide Band Pulsar Machine for the Westerbork Synthesis Radio Telescope , 2008 .

[23]  B. Stappers,et al.  PuMaII: A wide band pulsar machine for the WSRT , 2008, 0802.2245.

[24]  A. Hopkins,et al.  Science with the Australian Square Kilometre Array Pathfinder , 2007, Publications of the Astronomical Society of Australia.

[25]  H. Falcke,et al.  VLBI observations of Jupiter with the initial test station of LOFAR and the Nançay decametric array , 2007, 0809.2740.

[26]  J. Brown,et al.  Rotation Measures of Extragalactic Sources behind the Southern Galactic Plane: New Insights into the Large-Scale Magnetic Field of the Inner Milky Way , 2007, 0704.0458.

[27]  A. Lyne,et al.  Pulsar Rotation Measures and the Large-Scale Structure of the Galactic Magnetic Field , 2006, astro-ph/0601357.

[28]  K. Institute,et al.  Faraday rotation measure synthesis , 2005, astro-ph/0507349.

[29]  R. Manchester,et al.  psrchive and psrfits: An Open Approach to Radio Pulsar Data Storage and Analysis , 2004, Publications of the Astronomical Society of Australia.

[30]  D. C. Backer,et al.  Arecibo 430 MHz Pulsar Polarimetry: Faraday Rotation Measures and Morphological Classifications , 2003, astro-ph/0310073.

[31]  Eric W. Greisen,et al.  AIPS, the VLA, and the VLBA , 2003 .

[32]  Andre Heck,et al.  Information Handling in Astronomy - Historical Vistas , 2002 .

[33]  E. Greisen,et al.  The 74 MHz System on the Very Large Array , 2007, 0704.3088.

[34]  W. C. Erickson,et al.  Ionospheric Corrections for VLA Observations Using Local GPS Data , 2001 .

[35]  D. Sokoloff,et al.  Depolarization and Faraday effects in galaxies , 1998 .

[36]  A. G. Lyne,et al.  New rotation measures of distant pulsars in the inner Galaxy and magnetic field reversals , 1994 .

[37]  A. Lyne,et al.  Faraday rotation measurements on 163 pulsars , 1987 .

[38]  R. Manchester Pulsar Rotation and Dispersion Measures and the Galactic Magnetic Field. , 1972 .

[39]  B. Burn On the Depolarization of Discrete Radio Sources by Faraday Dispersion , 1965 .

[40]  R. Wielebinski,et al.  Faraday Rotation of Polarized Galactic Radio Emission , 1962, Nature.

[41]  E. Appleton,et al.  Two Anomalies in the Ionosphere , 1946, Nature.