Extremal eigenvalues and eigenvectors of deformed Wigner matrices

We consider random matrices of the form $$H = W + \lambda V, \lambda \in {\mathbb {R}}^+$$H=W+λV,λ∈R+, where $$W$$W is a real symmetric or complex Hermitian Wigner matrix of size $$N$$N and $$V$$V is a real bounded diagonal random matrix of size $$N$$N with i.i.d. entries that are independent of $$W$$W. We assume subexponential decay of the distribution of the matrix entries of $$W$$W and we choose $$\lambda \sim 1$$λ∼1, so that the eigenvalues of $$W$$W and $$\lambda V$$λV are typically of the same order. Further, we assume that the density of the entries of $$V$$V is supported on a single interval and is convex near the edges of its support. In this paper we prove that there is $$\lambda _+\in {\mathbb {R}}^+$$λ+∈R+ such that the largest eigenvalues of $$H$$H are in the limit of large $$N$$N determined by the order statistics of $$V$$V for $$\lambda >\lambda _+$$λ>λ+. In particular, the largest eigenvalue of $$H$$H has a Weibull distribution in the limit $$N\rightarrow \infty $$N→∞ if $$\lambda >\lambda _+$$λ>λ+. Moreover, for $$N$$N sufficiently large, we show that the eigenvectors associated to the largest eigenvalues are partially localized for $$\lambda >\lambda _+$$λ>λ+, while they are completely delocalized for $$\lambda <\lambda _+$$λ

[1]  Horng-Tzer Yau,et al.  Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.

[2]  H. Yau,et al.  Rigidity of eigenvalues of generalized Wigner matrices , 2010, 1007.4652.

[3]  Jun Yin,et al.  Universality for generalized Wigner matrices with Bernoulli distribution , 2010, 1003.3813.

[4]  V. Vu,et al.  Universality of local eigenvalue statistics in random matrices with external source , 2013, 1308.1057.

[5]  Nariyuki Minami,et al.  Local fluctuation of the spectrum of a multidimensional Anderson tight binding model , 1996 .

[6]  A. Guionnet,et al.  Regularization by Free Additive Convolution, Square and Rectangular Cases , 2007, 0706.1419.

[7]  H. Yau,et al.  Universality of Sine-Kernel for Wigner Matrices with a Small Gaussian Perturbation , 2009, 0905.2089.

[8]  Tetiana Shcherbyna On Universality of Bulk Local Regime of the Deformed Gaussian Unitary Ensemble , 2008, 0804.2116.

[9]  A. Guionnet,et al.  An Introduction to Random Matrices , 2009 .

[10]  M. Aizenman,et al.  Localization at large disorder and at extreme energies: An elementary derivations , 1993 .

[11]  K. Johansson From Gumbel to Tracy-Widom , 2005, math/0510181.

[12]  Horng-Tzer Yau,et al.  Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices , 2007, 0711.1730.

[13]  T. Shcherbina On Universality of Local Edge Regime for the Deformed Gaussian Unitary Ensemble , 2011, 1101.1813.

[14]  Friedrich Götze,et al.  The arithmetic of distributions in free probability theory , 2005, math/0508245.

[15]  P. Biane On the free convolution with a semi-circular distribution , 1997 .

[16]  L. Erdős Universality of Wigner random matrices: a survey of recent results , 2010, 1004.0861.

[17]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[18]  L. Pastur On the spectrum of random matrices , 1972 .

[19]  Antonio Auffinger,et al.  Poisson convergence for the largest eigenvalues of heavy tailed random matrices , 2007, 0710.3132.

[20]  Jun Yin,et al.  A necessary and sufficient condition for edge universality of Wigner matrices , 2012, 1206.2251.

[21]  H. Yau,et al.  Wegner estimate and level repulsion for Wigner random matrices , 2008, 0811.2591.

[22]  Jun Yin,et al.  Delocalization and Diffusion Profile for Random Band Matrices , 2012, 1205.5669.

[23]  H. Yau,et al.  The local semicircle law for a general class of random matrices , 2012, 1212.0164.

[24]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[25]  Antti Knowles,et al.  Quantum Diffusion and Eigenfunction Delocalization in a Random Band Matrix Model , 2010, 1002.1695.

[26]  L. Erdős,et al.  UNIVERSALITY OF WIGNER RANDOM MATRICES , 2009, 0909.2691.

[27]  H. Yau,et al.  Bulk universality for generalized Wigner matrices , 2010, 1001.3453.

[28]  L. Pastur,et al.  On the Law of Addition of Random Matrices , 2000 .

[29]  Hari Bercovici,et al.  Outliers in the spectrum of large deformed unitarily invariant models , 2012, 1412.4916.

[30]  L. Haan,et al.  Extreme value theory , 2006 .

[31]  J. Lee,et al.  Local deformed semicircle law and complete delocalization for Wigner matrices with random potential , 2013, 1302.4532.

[32]  Jonathan Novak,et al.  Three lectures on free probability , 2012, 1205.2097.

[33]  Alexandru Nica,et al.  Free random variables : a noncommutative probability approach to free products with applications to random matrices, operator algebras, and harmonic analysis on free groups , 1992 .

[34]  Antti Knowles,et al.  Averaging Fluctuations in Resolvents of Random Band Matrices , 2012, 1205.5664.

[35]  F. Hiai,et al.  The semicircle law, free random variables, and entropy , 2006 .

[36]  S. Péché,et al.  On the lower bound of the spectral norm of symmetric random matrices with independent entries , 2007, 0706.0748.

[37]  Wigner Random Matrices with Non-Symmetrically Distributed Entries , 2007, math/0702035.

[38]  R. Speicher,et al.  Lectures on the Combinatorics of Free Probability: The free commutator , 2006 .

[39]  A. Soshnikov,et al.  A refinement of Wigner's semicircle law in a neighborhood of the spectrum edge for random symmetric matrices , 1998 .

[40]  J. Fröhlich,et al.  Absence of diffusion in the Anderson tight binding model for large disorder or low energy , 1983 .

[41]  S. Belinschi,et al.  A new approach to subordination results in free probability , 2007 .

[42]  Jeffrey Schenker,et al.  Eigenvector Localization for Random Band Matrices with Power Law Band Width , 2008, 0809.4405.

[43]  A. Guionnet,et al.  Localization and delocalization of eigenvectors for heavy-tailed random matrices , 2012, 1201.1862.

[44]  Alexander Soshnikov,et al.  Poisson Statistics for the Largest Eigenvalues of Wigner Random Matrices with Heavy Tails , 2004 .

[45]  A. Soshnikov Universality at the Edge of the Spectrum¶in Wigner Random Matrices , 1999, math-ph/9907013.

[46]  H. Yau,et al.  Spectral statistics of Erdős–Rényi graphs I: Local semicircle law , 2011, 1103.1919.

[47]  T. Tao,et al.  Random Matrices: Universality of Local Eigenvalue Statistics up to the Edge , 2009, 0908.1982.

[48]  J. Bouchaud,et al.  Theory of Lévy matrices. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[49]  C. Donati-Martin,et al.  Free Convolution with a Semicircular Distribution and Eigenvalues of Spiked Deformations of Wigner Matrices , 2010, 1006.3684.

[50]  Raj Rao Nadakuditi,et al.  Numerical computation of convolutions in free probability theory , 2012, 1203.1958.