Scaling of the Raman gain coefficient: applications to germanosilicate fibers

This paper presents a comprehensive analysis of the temperature dependence of a Raman amplifier and the scaling of the Raman gain coefficient with wavelength, modal overlap, and material composition. The temperature dependence is derived by applying a quantum theoretical description, whereas the scaling of the Raman gain coefficient is derived using a classical electromagnetic model. We also present experimental verification of our theoretical findings.

[1]  Demonstration of 1.3-μm Raman Fiber Amplifier Gain of 25 dB at a Pumping Power of 300 mW , 1995 .

[2]  P. N. Butcher,et al.  The Elements of Nonlinear Optics , 1990 .

[3]  H. Haus,et al.  Measurement of the Raman gain spectrum of optical fibers. , 1995, Optics letters.

[4]  Nicolaas Bloembergen,et al.  Theory of Stimulated Brillouin and Raman Scattering , 1965 .

[5]  S. Stulz,et al.  3.28 Tb/s (82/spl times/40 Gb/s) transmission over 3/spl times/100 km nonzero-dispersion fiber using dual C- and L-band hybrid Raman/erbium doped inline amplifiers , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).

[6]  Noriyoshi Shibata,et al.  Raman spectra of binary high-silica glasses and fibers containing GeO2, P2O5 and B2O3 , 1981 .

[7]  Steve Sanders,et al.  Dependence of Raman polarization dependent gain on pump degree of polarization at high gain levels , 2000 .

[8]  M. Levenson,et al.  Raman-induced Kerr effect with elliptical polarization* , 1976 .

[9]  K. Rottwitt,et al.  Pump interactions in a 100-nm bandwidth Raman amplifier , 1999, IEEE Photonics Technology Letters.

[10]  J. Sharpe,et al.  Polarization based, direction sensitive speckle interferometer , 1999 .

[11]  Changes in Raman gain coefficient with pump wavelength in modern transmission fibres , 2002 .

[12]  J. Bromage,et al.  A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles , 2002, IEEE Photonics Technology Letters.

[13]  Reduction of the degree of polarization of a laser diode with a fiber Lyot depolarizer , 1999, IEEE Photonics Technology Letters.

[14]  A. Bloom Quantum Electronics , 1972, Nature.

[15]  F. Wallace FIBER OPTICS. , 1965, Hospital topics.

[16]  A. Laubereau,et al.  High intensity Raman interactions , 1979 .

[17]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[18]  F. L. Galeener,et al.  Comparison of the neutron, Raman, and infrared vibrational spectra of vitreous SiO 2 , GeO 2 , and BeF 2 , 1983 .

[19]  Karsten Rottwitt,et al.  A 92 nm Bandwidth Raman Amplifier , 1998 .

[20]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[21]  Effective core area for stimulated Raman scattering in single-mode optical fibres , 1985 .

[22]  M. J. Adams An introduction to optical waveguides , 1981 .

[23]  J.J. DeMarco,et al.  Capacity upgrades of transmission systems by Raman amplification , 1996, IEEE Photonics Technology Letters.

[24]  D. Hall,et al.  An introduction to optical waveguides , 1982, Proceedings of the IEEE.

[25]  A. Hasegawa,et al.  Numerical study of optical soliton transmission amplified periodically by the stimulated Raman process. , 1984, Applied optics.

[26]  Nori Shibata,et al.  Theory of signal light amplification by stimulated Raman scattering in twisted single-mode optical fibers , 1986 .

[27]  R. Stolen,et al.  Experimental demonstration of soliton propagation in long fibers: loss compensated by Raman gain. , 1985, Optics letters.

[28]  N R Newbury Raman gain: pump-wavelength dependence in single-mode fiber. , 2002, Optics letters.

[29]  C.R.S. Fludger,et al.  Statistical properties of polarisation dependent gain in fibre Raman amplifiers , 2002, Optical Fiber Communication Conference and Exhibit.