An approach based on the free-electron theory to calculate electron conductance of perfect metallic nanowires

[1]  M. Grado-Caffaro,et al.  Analytical modeling of electrical conduction through tunneling quasiresonant states in a one-atom metallic nanowire , 2009 .

[2]  K. Varga,et al.  Calculation of self-energy matrices using complex absorbing potentials in electron transport calculations , 2008 .

[3]  M. Grado-Caffaro,et al.  Analytical determination of the Fermi velocity in multiwalled carbon nanotubes , 2008 .

[4]  M. Grado-Caffaro,et al.  Highly asymmetric atom-lead coupling in nanowires for resonance regime , 2008 .

[5]  M. Grado-Caffaro,et al.  A potential-well based formulation to calculate the quantized conductance of a one-atom constriction , 2008 .

[6]  M. Apostol A new approach to the quantized electrical conductance , 2008, 0804.3689.

[7]  M. Grado-Caffaro,et al.  Estimation of the density of localized electronic states for multiwalled carbon nanotubes , 2008 .

[8]  S. Kruchinin,et al.  PHENOMENA IN RESONANT TUNNELING THROUGH DEGENERATED ENERGY STATES WITH ELECTRON CORRELATION , 2007 .

[9]  B. Doudin,et al.  Fabrication and quantum conductance of electroplated Ni nanocontacts , 2006 .

[10]  M. Grado-Caffaro,et al.  On the size of small single-walled carbon nanotubes , 2005 .

[11]  M. Grado-Caffaro,et al.  FRACTIONAL CONDUCTANCE IN MULTIWALLED CARBON NANOTUBES: A SEMI-CLASSICAL THEORY , 2004 .

[12]  M. Grado-Caffaro,et al.  A THEORETICAL ANALYSIS ON THE FERMI LEVEL IN MULTIWALLED CARBON NANOTUBES , 2004 .

[13]  R. Verch,et al.  Quantum Inequalities in Quantum Mechanics , 2003, math-ph/0312046.

[14]  Massimo V. Fischetti,et al.  Ballistic FET modeling using QDAME: quantum device analysis by modal evaluation , 2002 .

[15]  M. Grado-Caffaro,et al.  Effect of the oxide thickness on the operation speed of a field-effect transistor in terms of the carrier tunneling rate , 2002 .

[16]  Tao,et al.  Fractional conductance quantization in metallic nanoconstrictions under electrochemical potential control , 2000, Physical review letters.

[17]  C. Kane,et al.  Broken symmetries in scanning tunneling images of carbon nanotubes , 1999, cond-mat/9902303.

[18]  R. Egger,et al.  Effective Low-Energy Theory for Correlated Carbon Nanotubes , 1997, cond-mat/9708065.

[19]  W. Heer,et al.  Fractional quantum conductance in gold nanowires , 1997 .

[20]  A. Bracken,et al.  Probability backflow and a new dimensionless quantum number , 1994 .

[21]  Hasegawa,et al.  Direct observation of standing wave formation at surface steps using scanning tunneling spectroscopy. , 1993, Physical review letters.

[22]  D. Eigler,et al.  Imaging standing waves in a two-dimensional electron gas , 1993, Nature.

[23]  D. Albert Quantum Mechanics and Experience , 1992 .

[24]  M. Grado-Caffaro,et al.  Theoretical evaluation of electron mobility in multi-walled carbon nanotubes , 2004 .

[25]  Charles Kittel,et al.  Quantum Theory of Solids , 1963 .

[26]  S. Raimes The wave mechanics of electrons in metals , 1961 .