The search-based approach

Search-based procedural content generation is the use of evolutionary computation and similar methods to generate game content. This chapter gives an overview of this approach to PCG, and lists a number of core considerations for developing a search-based PCG solution. In particular, we discuss how to best represent content so that the content space becomes searchable, and how to create an evaluation function that allows for effective search. Three longer examples of using search-based PCG to evolve content for specific games are given.

[1]  Robert Woodbury,et al.  Searching for Designs: Paradigm and Practice , 1991 .

[2]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[3]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[4]  Julian Togelius,et al.  Towards Automatic Personalized Content Generation for Platform Games , 2010, AIIDE.

[5]  M. O'Neill,et al.  Grammatical evolution , 2001, GECCO '09.

[6]  William V. Wright,et al.  A Theory of Fun for Game Design , 2004 .

[7]  Philippe Pasquier,et al.  A Generic Approach to Challenge Modeling for the Procedural Creation of Video Game Levels , 2011, IEEE Transactions on Computational Intelligence and AI in Games.

[8]  Philippe Pasquier,et al.  The Evolution of Fun: Automatic Level Design Through Challenge Modeling , 2010, ICCC.

[9]  Daniele Loiacono,et al.  Interactive evolution for the procedural generation of tracks in a high-end racing game , 2011, GECCO '11.

[10]  Julian Togelius,et al.  Towards automatic personalised content creation for racing games , 2007, 2007 IEEE Symposium on Computational Intelligence and Games.

[11]  Julian Togelius,et al.  Controllable procedural map generation via multiobjective evolution , 2013, Genetic Programming and Evolvable Machines.

[12]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[13]  Georgios N. Yannakakis,et al.  Mining multimodal sequential patterns: a case study on affect detection , 2011, ICMI '11.

[14]  Riccardo Poli,et al.  A Field Guide to Genetic Programming , 2008 .

[15]  Georgios N. Yannakakis,et al.  Proceedings of the SAB'06 Workshop on Adaptive Approaches for Optimizing Player Satisfaction in Computer and Physical Games , 2006 .

[16]  Nicole Fruehauf Flow The Psychology Of Optimal Experience , 2016 .

[17]  Kostas Karpouzis,et al.  Fusing Visual and Behavioral Cues for Modeling User Experience in Games , 2013, IEEE Transactions on Cybernetics.

[18]  Julian Togelius,et al.  Evolving Interesting Maps for a First Person Shooter , 2011, EvoApplications.

[19]  Marios C. Angelides,et al.  Procedural Content Generation , 2014 .

[20]  Terri Gullickson The Creative Mind: Myths and Mechanisms. , 1995 .

[21]  Julian Togelius,et al.  Multiobjective exploration of the StarCraft map space , 2010, Proceedings of the 2010 IEEE Conference on Computational Intelligence and Games.

[22]  Barbara Gengler Report: Blizzard entertainment sued , 1998 .

[23]  Julian Togelius,et al.  Modelling and evaluation of complex scenarios with the Strategy Game Description Language , 2011, 2011 IEEE Conference on Computational Intelligence and Games (CIG'11).

[24]  Julian Togelius,et al.  Making Racing Fun Through Player Modeling and Track Evolution , 2006 .

[25]  Kenneth O. Stanley,et al.  Evolving content in the Galactic Arms Race video game , 2009, 2009 IEEE Symposium on Computational Intelligence and Games.

[26]  Frédéric Maire,et al.  Evolutionary Game Design , 2011, IEEE Transactions on Computational Intelligence and AI in Games.

[27]  Georgios N. Yannakakis,et al.  Entertainment Modeling in Physical Play Through Physiology Beyond Heart-Rate , 2007, ACII.

[28]  Riccardo Poli,et al.  Introduction to genetic programming , 2009, GECCO '09.

[29]  Julian Togelius,et al.  Search-Based Procedural Content Generation , 2010, EvoApplications.

[30]  Julian Togelius,et al.  Evolving levels for Super Mario Bros using grammatical evolution , 2012, 2012 IEEE Conference on Computational Intelligence and Games (CIG).