Control Effort Reduction in Tracking Feedback Laws

We develop a path-following algorithm for redesign of tracking feedback laws to reduce the control effort. Our algorithm provides a tradeoff between the control effort and the dynamic performance along the path, while maintaining the desired convergence to the path. We illustrate it on a realistic hovercraft model, and compare the resulting control effort with control efforts of other path-following and tracking algorithms

[1]  K. Loparo,et al.  Stochastic stability properties of jump linear systems , 1992 .

[2]  J. Grizzle,et al.  Necessary conditions for asymptotic tracking in nonlinear systems , 1994, IEEE Trans. Autom. Control..

[3]  José Claudio Geromel,et al.  Continuous-time state-feedback H2-control of Markovian jump linear systems via convex analysis , 1999, Autom..

[4]  E. Boukas,et al.  Necessary and Sufficient Condition for Robust Stability and Stabilizability of Continuous-Time Linear Systems with Markovian Jumps , 1998 .

[5]  Antonio M. Pascoal,et al.  Nonlinear path following with applications to the control of autonomous underwater vehicles , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[6]  H. Chizeck,et al.  Controllability, stabilizability, and continuous-time Markovian jump linear quadratic control , 1990 .

[7]  E. Boukas,et al.  On stabilization of uncertain linear systems with jump parameters , 1999 .

[8]  Joao P. Hespanha,et al.  Position tracking for a nonlinear underactuated hovercraft: controller design and experimental results , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[9]  Marcelo D. Fragoso,et al.  Optimal Control for Continuous-Time Linear Quadratic Problems with Infinite Markov Jump Parameters , 2001, SIAM J. Control. Optim..

[10]  A. Isidori Nonlinear Control Systems , 1985 .

[11]  Zhong-Ping Jiang,et al.  Robust adaptive path following of underactuated ships , 2004, Autom..

[12]  E. Boukas,et al.  Robust H∞ control for linear Markovian jump systems with unknown nonlinearities , 2003 .

[13]  Lars Nielsen,et al.  Stability analysis of an online algorithm for torque limited path following , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[14]  Minyue Fu,et al.  Guaranteed cost control of uncertain nonlinear systems via polynomial lyapunov functions , 2002, IEEE Trans. Autom. Control..

[15]  O. L. V. Costa,et al.  Finite horizon quadratic optimal control and a separation principle for Markovian jump linear systems , 2003, IEEE Trans. Autom. Control..

[16]  Roger Skjetne,et al.  Robust output maneuvering for a class of nonlinear systems , 2004, Autom..

[17]  J. D. Val,et al.  On the observability and detectability of continuous-time Markov jump linear systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[18]  John R. Hauser,et al.  Maneuver Regulation from Trajectory Tracking: Feedback Linearizable Systems * , 1995 .

[19]  D. Coutinho,et al.  Stability analysis and guaranteed domain of attraction for a class of hybrid systems: an LMI approach , 2003 .

[20]  A. S. e Silva,et al.  Stability analysis and control of a class of differential‐algebraic nonlinear systems , 2004 .

[21]  M. Fragoso,et al.  Mean Square Stabilizability of Continuous-Time Linear Systems with Partial Information on the Markovian Jumping Parameters , 2004 .

[22]  P. Encarnacao,et al.  Combined trajectory tracking and path following: an application to the coordinated control of autonomous marine craft , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[23]  Gérard Scorletti,et al.  Control of rational systems using linear-fractional representations and linear matrix inequalities , 1996, Autom..

[24]  D. Sworder Feedback control of a class of linear systems with jump parameters , 1969 .

[25]  N. Harris McClamroch,et al.  Tracking and maneuver regulation control for nonlinear nonminimum phase systems: application to flight control , 2002, IEEE Trans. Control. Syst. Technol..

[26]  Luca Consolini,et al.  A path following problem for a class of non-holonomic control systems with noise , 2005, Autom..