Multiplayer Reach-Avoid Games via Pairwise Outcomes

A multiplayer reach-avoid game is a differential game between an attacking team with <inline-formula> <tex-math notation="LaTeX">$N_{A}$</tex-math></inline-formula> attackers and a defending team with <inline-formula> <tex-math notation="LaTeX">$N_{D}$</tex-math></inline-formula> defenders playing on a compact domain with obstacles. The attacking team aims to send <inline-formula> <tex-math notation="LaTeX">$M$</tex-math></inline-formula> of the <inline-formula> <tex-math notation="LaTeX">$N_{A}$</tex-math></inline-formula> attackers to some target location, while the defending team aims to prevent that by capturing attackers or indefinitely delaying attackers from reaching the target. Although the analysis of this game plays an important role in many applications, the optimal solution to this game is computationally intractable when <inline-formula> <tex-math notation="LaTeX">$N_{A} > 1$</tex-math></inline-formula> or <inline-formula> <tex-math notation="LaTeX">$N_{D} > 1$</tex-math></inline-formula>. In this technical note, we present two approaches for the <inline-formula> <tex-math notation="LaTeX">$N_{A}=N_{D}=1$</tex-math></inline-formula> case to determine pairwise outcomes, and a graph theoretic maximum matching approach to merge these pairwise outcomes for an <inline-formula> <tex-math notation="LaTeX">$N_{A},N_{D} > 1$</tex-math></inline-formula> solution that provides guarantees on the performance of the defending team. We will show that the four-dimensional Hamilton–Jacobi–Isaacs approach allows for real-time updates to the maximum matching, and that the two-dimensional “path defense” approach is considerably more scalable with the number of players while maintaining defender performance guarantees.

[1]  Ian M. Mitchell,et al.  A Toolbox of Level Set Methods , 2005 .

[2]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Nicholas Roy,et al.  Air-Combat Strategy Using Approximate Dynamic Programming , 2008 .

[4]  Alexandre M. Bayen,et al.  A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games , 2005, IEEE Transactions on Automatic Control.

[5]  J. Sprinkle,et al.  Encoding aerial pursuit/evasion games with fixed wing aircraft into a nonlinear model predictive tracking controller , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[6]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[7]  Claire J. Tomlin,et al.  A differential game approach to planning in adversarial scenarios: A case study on capture-the-flag , 2011, 2011 IEEE International Conference on Robotics and Automation.

[8]  Heinz Erzberger,et al.  Automated Conflict Resolution For Air Traffic Control , 2005 .

[9]  Georgios C. Chasparis,et al.  Linear-programming-based multi-vehicle path planning with adversaries , 2005, Proceedings of the 2005, American Control Conference, 2005..

[10]  Wojciech Rytter,et al.  Fast parallel algorithms for graph matching problems , 1998 .

[11]  Raffaello D'Andrea,et al.  A decomposition approach to multi-vehicle cooperative control , 2005, Robotics Auton. Syst..

[12]  S. Shankar Sastry,et al.  Reachability calculations for automated aerial refueling , 2008, 2008 47th IEEE Conference on Decision and Control.

[13]  P. Varaiya,et al.  Differential Games , 1994 .