Effects of the gut microbiota on obesity and glucose homeostasis

[1]  J. Parkhill,et al.  Dominant and diet-responsive groups of bacteria within the human colonic microbiota , 2011, The ISME Journal.

[2]  S. Rabot,et al.  Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[3]  Min Zhang,et al.  Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors , 2010, Proceedings of the National Academy of Sciences.

[4]  E. Murphy,et al.  Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models , 2010, Gut.

[5]  F. Bäckhed,et al.  Effects of gut microbiota on obesity and atherosclerosis via modulation of inflammation and lipid metabolism , 2010, Journal of internal medicine.

[6]  J. Tap,et al.  Differential Adaptation of Human Gut Microbiota to Bariatric Surgery–Induced Weight Loss , 2010, Diabetes.

[7]  C. Jobin,et al.  High-Fat Diet: Bacteria Interactions Promote Intestinal Inflammation Which Precedes and Correlates with Obesity and Insulin Resistance in Mouse , 2010, PloS one.

[8]  F. Bäckhed,et al.  The endocannabinoid system links gut microbiota to adipogenesis , 2010, Molecular systems biology.

[9]  M. Yamaguchi,et al.  Bile alcohols function as the ligands of membrane-type bile acid-activated G protein-coupled receptor , 2010, Journal of Lipid Research.

[10]  M. Blaut,et al.  Absence of intestinal microbiota does not protect mice from diet-induced obesity , 2010, British Journal of Nutrition.

[11]  F. Bäckhed,et al.  The gut microbiota modulates host energy and lipid metabolism in mice[S] , 2010, Journal of Lipid Research.

[12]  R. Ley,et al.  Metabolic Syndrome and Altered Gut Microbiota in Mice Lacking Toll-Like Receptor 5 , 2010, Science.

[13]  C. Glass,et al.  Macrophages, inflammation, and insulin resistance. , 2010, Annual review of physiology.

[14]  S. Sørensen,et al.  Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adults , 2010, PloS one.

[15]  A. Schwiertz,et al.  Microbiota and SCFA in Lean and Overweight Healthy Subjects , 2010, Obesity.

[16]  Ruth E Ley,et al.  Obesity and the human microbiome , 2010, Current opinion in gastroenterology.

[17]  R. Knight,et al.  The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice , 2009, Science Translational Medicine.

[18]  I. Verma,et al.  Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. , 2009, Cell metabolism.

[19]  Rob Knight,et al.  High-fat diet determines the composition of the murine gut microbiome independently of obesity. , 2009, Gastroenterology.

[20]  J. Auwerx,et al.  TGR5-mediated bile acid sensing controls glucose homeostasis. , 2009, Cell metabolism.

[21]  T. van de Wiele,et al.  Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability , 2009, Gut.

[22]  Olli Simell,et al.  Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes , 2008, The Journal of experimental medicine.

[23]  A. M. Habib,et al.  Glucose Sensing in L Cells: A Primary Cell Study , 2008, Cell metabolism.

[24]  G. Hotamisligil,et al.  Inflammation and endoplasmic reticulum stress in obesity and diabetes , 2008, International Journal of Obesity.

[25]  Masashi Yanagisawa,et al.  Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41 , 2008, Proceedings of the National Academy of Sciences.

[26]  B. Roe,et al.  A core gut microbiome in obese and lean twins , 2008, Nature.

[27]  Elaine Holmes,et al.  Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes , 2008, Molecular systems biology.

[28]  H. Flint,et al.  Human colonic microbiota associated with diet, obesity and weight loss , 2008, International Journal of Obesity.

[29]  R. Ley,et al.  Innate immunity and intestinal microbiota in the development of Type 1 diabetes , 2008, Nature.

[30]  M. Hamady,et al.  Evolution of Mammals and Their Gut Microbes , 2008, Science.

[31]  L. Fulton,et al.  Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. , 2008, Cell host & microbe.

[32]  M. Blaut,et al.  The Toll-like receptors TLR2 and TLR4 do not affect the intestinal microbiota composition in mice. , 2008, Environmental microbiology.

[33]  Hiroshi Mori,et al.  Comparative Metagenomics Revealed Commonly Enriched Gene Sets in Human Gut Microbiomes , 2007, DNA research : an international journal for rapid publication of reports on genes and genomes.

[34]  Patrice D Cani,et al.  Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats , 2007, British Journal of Nutrition.

[35]  J. Ferrières,et al.  Metabolic Endotoxemia Initiates Obesity and Insulin Resistance , 2007, Diabetes.

[36]  Daniel B. DiGiulio,et al.  Development of the Human Infant Intestinal Microbiota , 2007, PLoS biology.

[37]  Alyce Adams,et al.  Why is the Developed World Obese? , 2007, Annual review of public health.

[38]  Jeffrey I. Gordon,et al.  Mechanisms underlying the resistance to diet-induced obesity in germ-free mice , 2007, Proceedings of the National Academy of Sciences.

[39]  P. Turnbaugh,et al.  Microbial ecology: Human gut microbes associated with obesity , 2006, Nature.

[40]  E. Mardis,et al.  An obesity-associated gut microbiome with increased capacity for energy harvest , 2006, Nature.

[41]  H. Miyoshi,et al.  Targeted disruption of G protein-coupled bile acid receptor 1 (Gpbar1/M-Bar) in mice. , 2006, The Journal of endocrinology.

[42]  M. McCarthy,et al.  Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice , 2006, Proceedings of the National Academy of Sciences.

[43]  M. Pop,et al.  Metagenomic Analysis of the Human Distal Gut Microbiome , 2006, Science.

[44]  J. Auwerx,et al.  Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation , 2006, Nature.

[45]  T. Willson,et al.  Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[46]  W. Wahli,et al.  The Fasting-induced Adipose Factor/Angiopoietin-like Protein 4 Is Physically Associated with Lipoproteins and Governs Plasma Lipid Levels and Adiposity* , 2006, Journal of Biological Chemistry.

[47]  Benjamin P. Westover,et al.  Glycan Foraging in Vivo by an Intestine-Adapted Bacterial Symbiont , 2005, Science.

[48]  Ting Wang,et al.  The gut microbiota as an environmental factor that regulates fat storage. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J. Holst,et al.  Both GLP-1 and GIP are insulinotropic at basal and postprandial glucose levels and contribute nearly equally to the incretin effect of a meal in healthy subjects , 2003, Regulatory Peptides.

[50]  J. Holst,et al.  Colonic fermentation influences lower esophageal sphincter function in gastroesophageal reflux disease. , 2003, Gastroenterology.

[51]  Takao Nakamura,et al.  Identification of membrane-type receptor for bile acids (M-BAR). , 2002, Biochemical and biophysical research communications.

[52]  Masahiro Tohkin,et al.  Targeted Disruption of the Nuclear Receptor FXR/BAR Impairs Bile Acid and Lipid Homeostasis , 2000, Cell.

[53]  J. Manson,et al.  Annual deaths attributable to obesity in the United States. , 1999, JAMA.

[54]  R. Mackie,et al.  Developmental microbial ecology of the neonatal gastrointestinal tract. , 1999, The American journal of clinical nutrition.

[55]  M Höcker,et al.  Molecular Mechanisms of Enteroendocrine Differentiaton , 1998, Annals of the New York Academy of Sciences.

[56]  J. Rehfeld,et al.  The new biology of gastrointestinal hormones. , 1998, Physiological reviews.

[57]  E. Theodorsson,et al.  Microflora modulates endocrine cells in the gastrointestinal mucosa of the rat. , 1994, Gastroenterology.

[58]  T. Wolever,et al.  Effect of rectal infusion of short chain fatty acids in human subjects. , 1989, The American journal of gastroenterology.

[59]  T. Midtvedt,et al.  Short-chain fatty acids in germfree mice and rats. , 1986, The Journal of nutrition.

[60]  A. Onderdonk,et al.  Influence of age, sex, and diet on asymptomatic colonization of infants with Clostridium difficile , 1983, Journal of clinical microbiology.

[61]  C. Larkin,et al.  Dietary intake, energy metabolism, and excretory losses of adult male germfree Wistar rats. , 1983, Laboratory animal science.

[62]  P. L. Stark,et al.  The microbial ecology of the large bowel of breast-fed and formula-fed infants during the first year of life. , 1982, Journal of medical microbiology.

[63]  B. Wostmann,et al.  Analysis of bile acids in conventional and germfree rats. , 1976, Journal of lipid research.

[64]  B. Wostmann Intestinal bile acids and cholesterol absorption in the germfree rat. , 1973, The Journal of nutrition.

[65]  T. Midtvedt,et al.  ISOLATED FECAL MICROORGANISMS CAPABLE OF 7 α-DEHYDROXYLATING BILE ACIDS , 1966, The Journal of experimental medicine.

[66]  Jennifer C. Drew,et al.  Toward defining the autoimmune microbiome for type 1 diabetes , 2011, The ISME Journal.

[67]  M. Bohlooly-y,et al.  Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. , 2011, American journal of physiology. Endocrinology and metabolism.

[68]  B. Staels,et al.  Role of bile acids and bile acid receptors in metabolic regulation. , 2009, Physiological reviews.

[69]  D. Hardie,et al.  AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. , 2005, Cell metabolism.

[70]  J. Neu,et al.  The Neonatal Gastrointestinal Tract: Developmental Anatomy, Physiology, and Clinical Implications , 2003 .

[71]  W. Walker,et al.  Protective nutrients and bacterial colonization in the immature human gut. , 1999, Advances in pediatrics.