Aggregation Operators and Commuting

Commuting is an important property in any two-step information merging procedure where the results should not depend on the order in which the single steps are performed. We investigate the property of commuting for aggregation operators in connection with their relationship to bisymmetry. In case of bisymmetric aggregation operators we show a sufficient condition ensuring that two operators commute, while for bisymmetric aggregation operators with neutral element we even provide a full characterization of commuting n-ary operators by means of unary distributive functions. The case of associative operations, especially uninorms, is considered in detail.

[1]  Bernard De Baets,et al.  Transitivity Bounds in Additive Fuzzy Preference Structures , 2007, IEEE Transactions on Fuzzy Systems.

[2]  M. J. Frank,et al.  Associative Functions: Triangular Norms And Copulas , 2006 .

[3]  Christophe Labreuche,et al.  Bi-capacities - II: the Choquet integral , 2005, Fuzzy Sets Syst..

[4]  Christophe Labreuche,et al.  Bi-capacities - I: definition, Möbius transform and interaction , 2005, Fuzzy Sets Syst..

[5]  Radko Mesiar,et al.  Triangular norms. Position paper II: general constructions and parameterized families , 2004, Fuzzy Sets Syst..

[6]  Radko Mesiar,et al.  Triangular norms. Position paper III: continuous t-norms , 2004, Fuzzy Sets Syst..

[7]  Radko Mesiar,et al.  Aggregation on Finite Ordinal Scales by Scale Independent Functions , 2004, Order.

[8]  Radko Mesiar,et al.  Triangular norms. Position paper I: basic analytical and algebraic properties , 2004, Fuzzy Sets Syst..

[9]  Didier Dubois,et al.  On the use of aggregation operations in information fusion processes , 2004, Fuzzy Sets Syst..

[10]  Radko Mesiar,et al.  Domination of Aggregation Operators and Preservation of Transitivity , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[11]  Jean-Luc Marichal,et al.  On Order Invariant Synthesizing Functions , 2002 .

[12]  Doretta Vivona,et al.  The Cauchy equation on I-semigroups , 2002 .

[13]  Z. Páles Extension theorems for functional equations with bisymmetric operations , 2002 .

[14]  R. Mesiar,et al.  Aggregation operators: properties, classes and construction methods , 2002 .

[15]  Radko Mesiar,et al.  A review of aggregation operators , 2001 .

[16]  Bernard De Baets,et al.  Van Melle's combining function in MYCIN is a representable uninorm: An alternative proof , 1999, Fuzzy Sets Syst..

[17]  J. Aczél,et al.  Equations of Generalized Bisymmetry and of Consistent Aggregation: Weakly Surjective Solutions Which May Be Discontinuous at Places , 1997 .

[18]  Ronald R. Yager,et al.  Structure of Uninorms , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[19]  Solution of the Rectangularm×nGeneralized Bisymmetry Equation and of the Problem of Consistent Aggregation , 1996 .

[20]  D. Dubois,et al.  Aggregation of decomposable measures with application to utility theory , 1996 .

[21]  Radko Mesiar,et al.  On the Relationship of Associative Compensatory operators to triangular Norms and Conorms , 1996, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[22]  Paul C. Rhodes,et al.  Essentials of Fuzzy Modelling and Control , 1995 .

[23]  Ronald R. Yager,et al.  Essentials of fuzzy modeling and control , 1994 .

[24]  Petr Hájek,et al.  Uncertain information processing in expert systems , 1992 .

[25]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[26]  William R. Swartout,et al.  Rule-based expert systems: The mycin experiments of the stanford heuristic programming project , 1985 .

[27]  Bruce G. Buchanan,et al.  The MYCIN Experiments of the Stanford Heuristic Programming Project , 1985 .

[28]  J. Dombi Basic concepts for a theory of evaluation: The aggregative operator , 1982 .

[29]  K. McConway Marginalization and Linear Opinion Pools , 1981 .

[30]  W. Silvert Symmetric Summation: A Class of Operations on Fuzzy Sets , 1979 .

[31]  K. S. Fu,et al.  AN AXIOMATIC APPROACH TO RATIONAL DECISION MAKING IN A FUZZY ENVIRONMENT , 1975 .

[32]  J. Aczél,et al.  Lectures on Functional Equations and Their Applications , 1968 .

[33]  J. Aczél Vorlesungen über Funktionalgleichungen und ihre Anwendungen , 1960 .

[34]  J. Milnor,et al.  AN AXIOMATIC APPROACH TO MEASURABLE UTILITY , 1953 .

[35]  J. Aczél,et al.  Sur les opérations définies pour nombres réels , 1948 .