MATHEMATICAL ANALYSIS OF A SPECTRAL HYPERVISCOSITY LES MODEL FOR THE SIMULATION OF TURBULENT FLOWS
暂无分享,去创建一个
[1] J. Lions. Quelques résultats d'existence dans des équations aux dérivées partielles non linéaires , 1959 .
[2] E. Tadmor,et al. Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .
[3] Marie Farge,et al. Vorticity filaments in two-dimensional turbulence: creation, stability and effect , 1997, Journal of Fluid Mechanics.
[4] O. A. Ladyzhenskai︠a︡,et al. Boundary value problems of mathematical physics and related aspects of function theory , 1970 .
[5] Nikolaus A. Adams,et al. A Subgrid-Scale Deconvolution Approach for Shock Capturing , 2002 .
[6] R. Kohn,et al. Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .
[7] C. Doering,et al. Applied analysis of the Navier-Stokes equations: Index , 1995 .
[8] Jean-Luc Guermond,et al. Mathematical Perspectives on Large Eddy Simulation Models for Turbulent Flows , 2004 .
[9] D. Mccomb,et al. Explict-scales projections of the partitioned non-linear term in direct numerical simulation of the Navier-Stokes equation , 1998, physics/9806029.
[10] D. Mccomb,et al. EXPLICIT-SCALES PROJECTIONS OF THE PARTITIONED NON-LINEAR TERM IN DIRECT NUMERICAL SIMULATION OF THE NAVIER-STOKES EQUATION , 1998 .
[11] Raoul Robert,et al. Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations , 2000 .
[12] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .
[13] Darryl D. Holm,et al. A connection between the Camassa–Holm equations and turbulent flows in channels and pipes , 1999, chao-dyn/9903033.
[14] J. Smagorinsky,et al. GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .
[15] Jean Leray,et al. Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .
[16] Gui-Qiang G. Chen,et al. Spectral Viscosity Approximations to Multidimensional Scalar Conservation Laws , 1993 .
[17] Eitan Tadmor,et al. Legendre pseudospectral viscosity method for nonlinear conservation laws , 1993 .
[18] M. Lesieur,et al. Spectral-Dynamic Model for Large-Eddy Simulations of Turbulent Rotating Channel Flow , 1998 .
[19] Claude Basdevant,et al. A Study of Barotropic Model Flows: Intermittency, Waves and Predictability , 1981 .
[20] Charles R. Doering,et al. Applied analysis of the Navier-Stokes equations: Index , 1995 .
[21] A. Leonard. Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows , 1975 .
[22] Vladimir Scheffer. Nearly one dimensional singularities of solutions to the Navier-Stokes inequality , 1987 .
[23] H. Brezis. Analyse fonctionnelle : théorie et applications , 1983 .
[24] Georges-Henri Cottet,et al. Vorticity dynamics and turbulence models for Large-Eddy Simulations , 2003 .
[25] M. Lesieur,et al. Parameterization of Small Scales of Three-Dimensional Isotropic Turbulence Utilizing Spectral Closures , 1981 .
[26] R. Kraichnan. Eddy Viscosity in Two and Three Dimensions , 1976 .
[27] Marcel Lesieur,et al. Large‐eddy simulation of passive scalar diffusion in isotropic turbulence , 1989 .
[28] George Em Karniadakis,et al. A Spectral Vanishing Viscosity Method for Large-Eddy Simulations , 2000 .
[29] Caskey,et al. GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS I . THE BASIC EXPERIMENT , 1962 .
[30] J. Lions. Sur certaines équations paraboliques non linéaires , 1965 .
[31] Vladimir Scheffer. Hausdorff measure and the Navier-Stokes equations , 1977 .