MATHEMATICAL ANALYSIS OF A SPECTRAL HYPERVISCOSITY LES MODEL FOR THE SIMULATION OF TURBULENT FLOWS

This paper presents a model based on spectral hyperviscosity for the simulation of 3D turbulent incompressible flows. One particularity of this model is that the hyperviscosity is active only at the short velocity scales, a feature which is reminiscent of Large Eddy Simulation models. We propose a Fourier{Galerkin approximation of the perturbed Navier{Stokes equations and we show that, as the cuto wavenumber goes to innity, the solution of the model converges (up to subsequences) to a weak solution which is dissipative in the sense dened by Duchon and Robert (2000).

[1]  J. Lions Quelques résultats d'existence dans des équations aux dérivées partielles non linéaires , 1959 .

[2]  E. Tadmor,et al.  Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .

[3]  Marie Farge,et al.  Vorticity filaments in two-dimensional turbulence: creation, stability and effect , 1997, Journal of Fluid Mechanics.

[4]  O. A. Ladyzhenskai︠a︡,et al.  Boundary value problems of mathematical physics and related aspects of function theory , 1970 .

[5]  Nikolaus A. Adams,et al.  A Subgrid-Scale Deconvolution Approach for Shock Capturing , 2002 .

[6]  R. Kohn,et al.  Partial regularity of suitable weak solutions of the navier‐stokes equations , 1982 .

[7]  C. Doering,et al.  Applied analysis of the Navier-Stokes equations: Index , 1995 .

[8]  Jean-Luc Guermond,et al.  Mathematical Perspectives on Large Eddy Simulation Models for Turbulent Flows , 2004 .

[9]  D. Mccomb,et al.  Explict-scales projections of the partitioned non-linear term in direct numerical simulation of the Navier-Stokes equation , 1998, physics/9806029.

[10]  D. Mccomb,et al.  EXPLICIT-SCALES PROJECTIONS OF THE PARTITIONED NON-LINEAR TERM IN DIRECT NUMERICAL SIMULATION OF THE NAVIER-STOKES EQUATION , 1998 .

[11]  Raoul Robert,et al.  Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations , 2000 .

[12]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[13]  Darryl D. Holm,et al.  A connection between the Camassa–Holm equations and turbulent flows in channels and pipes , 1999, chao-dyn/9903033.

[14]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[15]  Jean Leray,et al.  Sur le mouvement d'un liquide visqueux emplissant l'espace , 1934 .

[16]  Gui-Qiang G. Chen,et al.  Spectral Viscosity Approximations to Multidimensional Scalar Conservation Laws , 1993 .

[17]  Eitan Tadmor,et al.  Legendre pseudospectral viscosity method for nonlinear conservation laws , 1993 .

[18]  M. Lesieur,et al.  Spectral-Dynamic Model for Large-Eddy Simulations of Turbulent Rotating Channel Flow , 1998 .

[19]  Claude Basdevant,et al.  A Study of Barotropic Model Flows: Intermittency, Waves and Predictability , 1981 .

[20]  Charles R. Doering,et al.  Applied analysis of the Navier-Stokes equations: Index , 1995 .

[21]  A. Leonard Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows , 1975 .

[22]  Vladimir Scheffer Nearly one dimensional singularities of solutions to the Navier-Stokes inequality , 1987 .

[23]  H. Brezis Analyse fonctionnelle : théorie et applications , 1983 .

[24]  Georges-Henri Cottet,et al.  Vorticity dynamics and turbulence models for Large-Eddy Simulations , 2003 .

[25]  M. Lesieur,et al.  Parameterization of Small Scales of Three-Dimensional Isotropic Turbulence Utilizing Spectral Closures , 1981 .

[26]  R. Kraichnan Eddy Viscosity in Two and Three Dimensions , 1976 .

[27]  Marcel Lesieur,et al.  Large‐eddy simulation of passive scalar diffusion in isotropic turbulence , 1989 .

[28]  George Em Karniadakis,et al.  A Spectral Vanishing Viscosity Method for Large-Eddy Simulations , 2000 .

[29]  Caskey,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS I . THE BASIC EXPERIMENT , 1962 .

[30]  J. Lions Sur certaines équations paraboliques non linéaires , 1965 .

[31]  Vladimir Scheffer Hausdorff measure and the Navier-Stokes equations , 1977 .