In situ genetic correction of F8 intron 22 inversion in hemophilia A patient-specific iPSCs

[1]  C. Yanover,et al.  The intron-22-inverted F8 locus permits factor VIII synthesis: explanation for low inhibitor risk and a role for pharmacogenomics. , 2015, Blood.

[2]  S. Yamanaka,et al.  Delivery of Full-Length Factor VIII Using a piggyBac Transposon Vector to Correct a Mouse Model of Hemophilia A , 2014, PloS one.

[3]  Lisa D. Cabrita,et al.  Solution structure of the major factor VIII binding region on von Willebrand factor. , 2014, Blood.

[4]  D. Ginsburg,et al.  Murine coagulation factor VIII is synthesized in endothelial cells. , 2014, Blood.

[5]  E. Tuddenham In search of the source of factor VIII. , 2014, Blood.

[6]  R. Montgomery,et al.  A conditional knockout mouse model reveals endothelial cells as the principal and possibly exclusive source of plasma factor VIII. , 2014, Blood.

[7]  Jin-Soo Kim,et al.  Targeted inversion and reversion of the blood coagulation factor 8 gene in human iPS cells using TALENs , 2014, Proceedings of the National Academy of Sciences.

[8]  Desheng Liang,et al.  TALE nickase mediates high efficient targeted transgene integration at the human multi-copy ribosomal DNA locus. , 2014, Biochemical and biophysical research communications.

[9]  K. Peerlinck,et al.  Human liver sinusoidal endothelial cells but not hepatocytes contain factor VIII , 2014, Journal of thrombosis and haemostasis : JTH.

[10]  Gang Bao,et al.  An online bioinformatics tool predicts zinc finger and TALE nuclease off-target cleavage , 2013, Nucleic acids research.

[11]  K. Cornetta,et al.  Platelet-targeted gene therapy with human factor VIII establishes haemostasis in dogs with haemophilia A , 2013, Nature Communications.

[12]  C. Yanover,et al.  Synthesis of FVIII in Hemophilia-A patients with the intron-22-inversion may modulate immunogenicity , 2013, Nature Medicine.

[13]  E. Colletti,et al.  Mesenchymal stem cells contribute to endogenous FVIII:c production , 2013, Journal of cellular physiology.

[14]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[15]  Jiyeon Kweon,et al.  TALENs and ZFNs are associated with different mutation signatures , 2013, Nature Methods.

[16]  Igor Antoshechkin,et al.  A large-scale in vivo analysis reveals that TALENs are significantly more mutagenic than ZFNs generated using context-dependent assembly , 2013, Nucleic acids research.

[17]  G. Pan,et al.  Generation of integration-free neural progenitor cells from cells in human urine , 2013, Nature Methods.

[18]  R. Sarkar,et al.  Role of bone marrow transplantation for correcting hemophilia A in mice. , 2012, Blood.

[19]  T. VandenDriessche,et al.  Recent progress in gene therapy for hemophilia. , 2012, Human gene therapy.

[20]  D. Liang,et al.  Targeting of the Human Coagulation Factor IX Gene at rDNA Locus of Human Embryonic Stem Cells , 2012, PloS one.

[21]  Pratima Chowdary,et al.  Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. , 2011, The New England journal of medicine.

[22]  E. Colletti,et al.  Phenotypic correction of hemophilia A in sheep by postnatal intraperitoneal transplantation of FVIII-expressing MSC. , 2011, Experimental hematology.

[23]  M. Vemuri,et al.  Mesenchymal Stem Cell Assays and Applications , 2011, Methods in Molecular Biology.

[24]  J. Keith Joung,et al.  Targeted gene disruption in somatic zebrafish cells using engineered TALENs , 2011, Nature Biotechnology.

[25]  H. Tse,et al.  Generation of induced pluripotent stem cells from urine. , 2011, Journal of the American Society of Nephrology : JASN.

[26]  Kyle A. Barlow,et al.  A TALE nuclease architecture for efficient genome editing , 2011, Nature Biotechnology.

[27]  R. Montgomery,et al.  Targeting FVIII expression to endothelial cells regenerates a releasable pool of FVIII and restores hemostasis in a mouse model of hemophilia A. , 2010, Blood.

[28]  A. Luttun,et al.  Activation of human endothelial cells from specific vascular beds induces the release of a FVIII storage pool. , 2010, Blood.

[29]  J. Thomson,et al.  Hematopoietic and Endothelial Differentiation of Human Induced Pluripotent Stem Cells , 2009, Stem cells.

[30]  L. Fink,et al.  Phenotypic correction of murine hemophilia A using an iPS cell-based therapy , 2009, Proceedings of the National Academy of Sciences.

[31]  D. Bowen,et al.  Molecular characteristics of the intron 22 homologs of the coagulation factor VIII gene: an update , 2008, Journal of thrombosis and haemostasis : JTH.

[32]  C. P. Radic,et al.  Developing a new generation of tests for genotyping hemophilia‐causative rearrangements involving int22h and int1h hotspots in the factor VIII gene , 2008, Journal of thrombosis and haemostasis : JTH.

[33]  T. Ichisaka,et al.  Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors , 2007, Cell.

[34]  T. Graf Faculty Opinions recommendation of Induction of pluripotent stem cells from adult human fibroblasts by defined factors. , 2007 .

[35]  K. Xia,et al.  Non‐viral ex vivo transduction of human hepatocyte cells to express factor VIII using a human ribosomal DNA‐targeting vector , 2007, Journal of thrombosis and haemostasis : JTH.

[36]  C. Kirkpatrick,et al.  FVIII production by human lung microvascular endothelial cells. , 2006, Blood.

[37]  Jeffrey C. Miller,et al.  Highly efficient endogenous human gene correction using designed zinc-finger nucleases , 2005, Nature.

[38]  J. Oldenburg,et al.  Haemophilia A: from mutation analysis to new therapies , 2005, Nature Reviews Genetics.

[39]  K. Pasi,et al.  Haemophilias A and B , 2003, The Lancet.

[40]  S. Kochanek,et al.  Therapeutic factor VIII levels and negligible toxicity in mouse and dog models of hemophilia A following gene therapy with high-capacity adenoviral vectors. , 2003, Blood.

[41]  K. Golka,et al.  Cultures of exfoliated epithelial cells from different locations of the human urinary tract and the renal tubular system , 2000, Archives of Toxicology.

[42]  C. Balagué,et al.  Sustained high-level expression of full-length human factor VIII and restoration of clotting activity in hemophilic mice using a minimal adenovirus vector. , 2000, Blood.

[43]  M. Pittenger,et al.  Multilineage potential of adult human mesenchymal stem cells. , 1999, Science.

[44]  B. Trapnell,et al.  Sustained phenotypic correction of murine hemophilia A by in vivo gene therapy. , 1998, Blood.

[45]  S Chandrasegaran,et al.  Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Stylianos E. Antonarakis,et al.  Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A , 1993, Nature Genetics.

[47]  B. Keyt,et al.  Structure of human factor VIII , 1984, Nature.

[48]  E. Kelly,et al.  an update on , 2014 .

[49]  Yasmin,et al.  Title Endogenous factor VIII synthesis from the intron 22-inverted F 8 locus may modulate the immunogenicity of replacement therapy for hemophilia , 2014 .

[50]  S. Lim,et al.  Derivation and characterization of human ESC-derived mesenchymal stem cells. , 2011, Methods in molecular biology.

[51]  J. Mackay,et al.  Engineered Zinc Finger Proteins , 2010, Methods in Molecular Biology.

[52]  Jeffrey C. Miller,et al.  A rapid and general assay for monitoring endogenous gene modification. , 2010, Methods in molecular biology.