Evidence for a composite organic-inorganic fabric of belemnite rostra: implication for palaeoceanography
暂无分享,去创建一个
Xianghui Xiao | F. Fusseis | R. Hoffmann | B. Linzmeier | R. Lemanis | A. Immenhauser | N. Jöns | R. Neuser | D. Richter
[1] J. Owen. Isotopic Evidence , 2019, Hydromagmatic Processes and Platinum-Group Element Deposits in Layered Intrusions.
[2] S. Peters,et al. Oxygen Isotope Variability within Nautilus Shell Growth Bands , 2016, PloS one.
[3] A. Niedermayr,et al. Mollusc and brachiopod skeletal hard parts: Intricate archives of their marine environment , 2016 .
[4] I. Kruta,et al. Adaptations to squid-style high-speed swimming in Jurassic belemnitids , 2016, Biology Letters.
[5] I. Jarvis,et al. Intercontinental correlation of organic carbon and carbonate stable isotope records: evidence of climate and sea‐level change during the Turonian (Cretaceous) , 2015 .
[6] P. Wilby,et al. ISOTOPIC ANALYSIS OF JURASSIC (CALLOVIAN) MOLLUSKS FROM THE CHRISTIAN MALFORD LAGERSTÄTTE (UK): IMPLICATIONS FOR OCEAN WATER TEMPERATURE ESTIMATES BASED ON BELEMNOIDS , 2015 .
[7] P. Swart. The geochemistry of carbonate diagenesis: The past, present and future , 2015 .
[8] C. Korte,et al. Diagenetic alteration in low-Mg calcite from macrofossils: a review , 2015 .
[9] J. Sessa,et al. Ammonite habitat revealed via isotopic composition and comparisons with co-occurring benthic and planktonic organisms , 2014, Proceedings of the National Academy of Sciences.
[10] C. Korte,et al. Effect of a Jurassic oceanic anoxic event on belemnite ecology and evolution , 2014, Proceedings of the National Academy of Sciences.
[11] H. Krapp,et al. Advantages of phase retrieval for fast x-ray tomographic microscopy , 2013 .
[12] M. Leng,et al. Evaluating Mg/Ca in belemnite calcite as a palaeo-proxy , 2013 .
[13] V. Barbin. Application of cathodoluminescence microscopy to recent and past biological materials: a decade of progress , 2013, Mineralogy and Petrology.
[14] M. Reolid,et al. Belemnite taphonomy (Upper Jurassic, Western Tethys) part II: Fossil-diagenetic analysis including combined petrographic and geochemical techniques , 2012 .
[15] M. Bar-Matthews,et al. Seasonal resolution of Eastern Mediterranean climate change since 34 ka from a Soreq Cave speleothem , 2012 .
[16] J. McArthur,et al. Lower Jurassic belemnites as indicators of palaeo-temperature , 2012 .
[17] D. Fuchs. The “rostrum”-problem in coleoid terminology – an attempt to clarify inconsistencies , 2012 .
[18] Q. Li. Belemnite palaeo-proxies and dating of Mesozoic carbonates , 2011 .
[19] J. Valley,et al. Planktonic foraminiferal oxygen isotope analysis by ion microprobe technique suggests warm tropical sea surface temperatures during the Early Paleogene , 2011 .
[20] J. Pálfy,et al. Late Valanginian–Barremian (Early Cretaceous) palaeotemperatures inferred from belemnite stable isotope and Mg/Ca ratios from Bersek Quarry (Gerecse Mountains, Transdanubian Range, Hungary) , 2011 .
[21] D. Raabe,et al. Interdigitating biocalcite dendrites form a 3-D jigsaw structure in brachiopod shells. , 2011, Acta biomaterialia.
[22] M. Harzhauser,et al. Ontogeny and habitat change in Mesozoic cephalopods revealed by stable isotopes (δ18O, δ13C) , 2010 .
[23] P. Harries,et al. Effect of diagenesis on the Sr, O, and C isotope composition of late Cretaceous mollusks from the Western Interior Seaway of North America , 2010, American Journal of Science.
[24] M. Harzhauser,et al. ' s personal copy Ontogeny and habitat change in Mesozoic cephalopods revealed by stable isotopes ( δ 18 O , δ 13 C ) , 2010 .
[25] R. Reid,et al. Processes of carbonate precipitation in modern microbial mats , 2009 .
[26] J. Scourse,et al. A novel method for imaging internal growth patterns in marine mollusks : A fluorescence case study on the aragonitic shell of the marine bivalve Arctica islandica ( Linnaeus ) , 2009 .
[27] M. Joachimski,et al. Stable isotopes, elemental distribution, and growth rings of belemnopsid belemnite rostra: Proxies for belemnite life habitat , 2009 .
[28] J. Lekki,et al. Complementary microstructural and chemical analyses of Sepia officinalis endoskeleton , 2009 .
[29] S. Grimes,et al. Isotopic analysis of coexisting Late Jurassic fish otoliths and molluscs: Implications for upper-ocean water temperature estimates , 2009 .
[30] M. Bar-Matthews,et al. Climate deterioration in the Eastern Mediterranean as revealed by ion microprobe analysis of a speleothem that grew from 2.2 to 0.9 ka in Soreq Cave, Israel , 2009, Quaternary Research.
[31] M. Collins,et al. Molecular organic matter in speleothems and its potential as an environmental proxy , 2008 .
[32] M. Leng,et al. Palaeotemperatures, polar ice-volume, and isotope stratigraphy (Mg/Ca, δ18O, δ13C, 87Sr/86Sr): The Early Cretaceous (Berriasian, Valanginian, Hauterivian) , 2007 .
[33] Á. Guerra. ECOLOGY OF SEPIA OFFICINALIS , 2006 .
[34] A. Fallick,et al. Shell structure, patterns and trends of oxygen and carbon stable isotopes in modern brachiopod shells , 2005 .
[35] P. Visscher,et al. Microbial mats as bioreactors: populations, processes, and products , 2005 .
[36] H. Massonne,et al. Ilmenite exsolution in olivine from the serpentinite body at Zöblitz, Saxonian Erzgebirge – microstructural evidence using EBSD , 2005, Mineralogical magazine.
[37] S. Robles,et al. Elemental and Oxygen Isotope Composition of Early Jurassic Belemnites: Salinity vs. Temperature Signals , 2004 .
[38] S. Robles,et al. Paleotemperature variations of Early Jurassic seawater recorded in geochemical trends of belemnites from the Basque-Cantabrian basin, northern Spain , 2004 .
[39] H. Wierzbowski. Carbon and oxygen isotope composition of Oxfordian–Early Kimmeridgian belemnite rostra: palaeoenvironmental implications for Late Jurassic seas , 2004 .
[40] J. Osán,et al. Investigation of chemical composition of belemnite rostra by synchrotron-based X-ray microfluorescence and diffraction and electron microprobe , 2004 .
[41] A. Longinelli,et al. δ18O(PO43−) and δ18O(CO32−) from belemnite guards from Eastern Europe: implications for palaeoceanographic reconstructions and for the preservation of pristine isotopic values , 2003 .
[42] S. Voigt,et al. Cenomanian palaeotemperatures derived from the oxygen isotopic composition of brachiopods and belemnites: evaluation of Cretaceous palaeotemperature proxies , 2003 .
[43] D. Schrag,et al. Paleoceanography of the Late Cretaceous (Maastrichtian) Western Interior Seaway of North America: evidence from Sr and O isotopes , 2003 .
[44] J. Götze,et al. Progress in application of cathodoluminescence (CL) in sedimentary petrology , 2003 .
[45] P. Iacumin,et al. δ 18 O of carbonate, quartz and phosphate from belemnite guards: implications for the isotopic record of old fossils and the isotopic composition of ancient seawater , 2002 .
[46] S. Robles,et al. Primary and diagenetic isotopic signals in fossils and hemipelagic carbonates: the Lower Jurassic of northern Spain , 2001 .
[47] L. Sloan,et al. Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.
[48] Daniel Chateigner,et al. Mollusc shell microstructures and crystallographic textures , 2000 .
[49] K. Sherrard. Cuttlebone morphology limits habitat depth in eleven species of Sepia (Cephalopoda: Sepiidae). , 2000, The Biological bulletin.
[50] G. Clark. Organic matrix taphonomy in some molluscan shell microstructures , 1999 .
[51] B. Sellwood,et al. “Warm” palaeotemperatures from high Late Jurassic palaeolatitudes (Falkland Plateau): Ecological, environmental or diagenetic controls? , 1997 .
[52] A. Arkhipkin,et al. Morphology and microstructure of the gladius and statolith from the boreal Pacific giant squid Moroteuthis robusta (Oegopsida; Onychoteuthidae) , 1997 .
[53] D. Pirrie,et al. Middle–Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients: Discussion and reply , 1996 .
[54] D. Hodell,et al. Middle–Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients , 1995 .
[55] A. Seilacher,et al. Remote biomineralization 2: fill skeletons controlling buoyancy in shelled cephalopods , 1993 .
[56] V. Barbin. Fluctuation in shell composition in Nautilus (Cephalopoda, Mollusca): evidence from cathodoluminescence , 1992 .
[57] M. Oti,et al. Diagenetic transformation of magnesium calcite in a monocrystalline rock-forming carbonate skeleton of an echinoderm , 1989 .
[58] G. Sælen. Diagenesis and construction of the belemnite rostrum , 1989 .
[59] R. Francois. A study of sulphur enrichment in the humic fraction of marine sediments during early diagenesis , 1987 .
[60] N. L. Thomas,et al. On the architecture and function of cuttlefish bone , 1983 .
[61] Christian Spaeth. Zur Frage der Schwimmverhältnisse bei Belemniten in Abhängigkeit vom Primärgefüge der Hartteile , 1975 .
[62] Christian Spaeth. Weitere untersuchungen der primär- und fremdstrukturen in calcitischen und aragonitischen schalenlagen englischer unterkreide-belemniten , 1973 .
[63] Christian Spaeth. Aragonitische und calcitische Primärstrukturen im Schalenbau eines Belemniten aus der englischen Unterkreide , 1971 .
[64] G. Stevens. The Jurassic and Cretaceous belemnites of New Zealand and a review of the Jurassic and Cretaceous belemnites of the Indo-Pacific region , 1965 .
[65] Hanns Müller-Stoll. Beiträge zur Anatomie der Belemnoidea , 1936 .