Evidence for a composite organic-inorganic fabric of belemnite rostra: implication for palaeoceanography

Carbonate skeletons of fossil marine organisms are widely used to reconstruct palaeoceanographic parameters. Specifically, the geochemistry of Jurassic and Cretaceous belemnite rostra is traditionally interpreted to represent near sea-surface seawater properties. More recently, an increasing number of workers, have reported significant scatter in geochemical data (e.g., δ18O, δ13C, element/Ca ratio) when comparing rostra from the same stratigraphic level or within a single belemnite rostrum. This scatter is not explained by differential diagenetic overprint alone. Here we report petrographic evidence on the primary ultrastructure of rostra of Megateuthis (Middle Jurassic) and Belemnitella and Gonioteuthis (Late Cretaceous). The biogenic ultrastructure consists of a filigree framework of triaxial branches and tetrahedrons of variable size forming a honeycomb-like network. Data presented here suggest that these rostra yielded as much as 50 to 90% primary pore space. On the level of a working hypothesis and in analogy with modern cephalopods we propose that the pore space was formerly filled with body fluid and/or organic compounds during the life time of these organisms. Intra-rostral porosity was post mortem occluded by earliest diagenetic isopachous calcite cements of a non-biogenic origin. These may have been precipitated due to increased alkalinity related to the decay of organic matter. If this holds true, then the resulting fabric represents a composite biogenic/abiogenic structure. In order to optically separate the two calcite phases forming a single calcite fibre, we employed a wide range of state-of-the-art analytical tools to thin sections and ultra-thin sections of well-preserved specimens. Pending a verification of these well-supported ultrastructural data by means of high-resolution geochemical analyses from biogenic and abiogenic phases, we suggest that these findings have significance for those using belemnite rostra as archives of their palaeoenvironment. Dr. René Hoffmann Ruhr Universität Bochum Department of Earth Sciences Institute of Geology, Mineralogy, and Geophysics Branch Paleontology Universitätsstrasse 150, Building NA2/132 44801 Bochum Germany E-Mail: Rene.Hoffmann@rub.de Bochum 2016-05-30

[1]  J. Owen Isotopic Evidence , 2019, Hydromagmatic Processes and Platinum-Group Element Deposits in Layered Intrusions.

[2]  S. Peters,et al.  Oxygen Isotope Variability within Nautilus Shell Growth Bands , 2016, PloS one.

[3]  A. Niedermayr,et al.  Mollusc and brachiopod skeletal hard parts: Intricate archives of their marine environment , 2016 .

[4]  I. Kruta,et al.  Adaptations to squid-style high-speed swimming in Jurassic belemnitids , 2016, Biology Letters.

[5]  I. Jarvis,et al.  Intercontinental correlation of organic carbon and carbonate stable isotope records: evidence of climate and sea‐level change during the Turonian (Cretaceous) , 2015 .

[6]  P. Wilby,et al.  ISOTOPIC ANALYSIS OF JURASSIC (CALLOVIAN) MOLLUSKS FROM THE CHRISTIAN MALFORD LAGERSTÄTTE (UK): IMPLICATIONS FOR OCEAN WATER TEMPERATURE ESTIMATES BASED ON BELEMNOIDS , 2015 .

[7]  P. Swart The geochemistry of carbonate diagenesis: The past, present and future , 2015 .

[8]  C. Korte,et al.  Diagenetic alteration in low-Mg calcite from macrofossils: a review , 2015 .

[9]  J. Sessa,et al.  Ammonite habitat revealed via isotopic composition and comparisons with co-occurring benthic and planktonic organisms , 2014, Proceedings of the National Academy of Sciences.

[10]  C. Korte,et al.  Effect of a Jurassic oceanic anoxic event on belemnite ecology and evolution , 2014, Proceedings of the National Academy of Sciences.

[11]  H. Krapp,et al.  Advantages of phase retrieval for fast x-ray tomographic microscopy , 2013 .

[12]  M. Leng,et al.  Evaluating Mg/Ca in belemnite calcite as a palaeo-proxy , 2013 .

[13]  V. Barbin Application of cathodoluminescence microscopy to recent and past biological materials: a decade of progress , 2013, Mineralogy and Petrology.

[14]  M. Reolid,et al.  Belemnite taphonomy (Upper Jurassic, Western Tethys) part II: Fossil-diagenetic analysis including combined petrographic and geochemical techniques , 2012 .

[15]  M. Bar-Matthews,et al.  Seasonal resolution of Eastern Mediterranean climate change since 34 ka from a Soreq Cave speleothem , 2012 .

[16]  J. McArthur,et al.  Lower Jurassic belemnites as indicators of palaeo-temperature , 2012 .

[17]  D. Fuchs The “rostrum”-problem in coleoid terminology – an attempt to clarify inconsistencies , 2012 .

[18]  Q. Li Belemnite palaeo-proxies and dating of Mesozoic carbonates , 2011 .

[19]  J. Valley,et al.  Planktonic foraminiferal oxygen isotope analysis by ion microprobe technique suggests warm tropical sea surface temperatures during the Early Paleogene , 2011 .

[20]  J. Pálfy,et al.  Late Valanginian–Barremian (Early Cretaceous) palaeotemperatures inferred from belemnite stable isotope and Mg/Ca ratios from Bersek Quarry (Gerecse Mountains, Transdanubian Range, Hungary) , 2011 .

[21]  D. Raabe,et al.  Interdigitating biocalcite dendrites form a 3-D jigsaw structure in brachiopod shells. , 2011, Acta biomaterialia.

[22]  M. Harzhauser,et al.  Ontogeny and habitat change in Mesozoic cephalopods revealed by stable isotopes (δ18O, δ13C) , 2010 .

[23]  P. Harries,et al.  Effect of diagenesis on the Sr, O, and C isotope composition of late Cretaceous mollusks from the Western Interior Seaway of North America , 2010, American Journal of Science.

[24]  M. Harzhauser,et al.  ' s personal copy Ontogeny and habitat change in Mesozoic cephalopods revealed by stable isotopes ( δ 18 O , δ 13 C ) , 2010 .

[25]  R. Reid,et al.  Processes of carbonate precipitation in modern microbial mats , 2009 .

[26]  J. Scourse,et al.  A novel method for imaging internal growth patterns in marine mollusks : A fluorescence case study on the aragonitic shell of the marine bivalve Arctica islandica ( Linnaeus ) , 2009 .

[27]  M. Joachimski,et al.  Stable isotopes, elemental distribution, and growth rings of belemnopsid belemnite rostra: Proxies for belemnite life habitat , 2009 .

[28]  J. Lekki,et al.  Complementary microstructural and chemical analyses of Sepia officinalis endoskeleton , 2009 .

[29]  S. Grimes,et al.  Isotopic analysis of coexisting Late Jurassic fish otoliths and molluscs: Implications for upper-ocean water temperature estimates , 2009 .

[30]  M. Bar-Matthews,et al.  Climate deterioration in the Eastern Mediterranean as revealed by ion microprobe analysis of a speleothem that grew from 2.2 to 0.9 ka in Soreq Cave, Israel , 2009, Quaternary Research.

[31]  M. Collins,et al.  Molecular organic matter in speleothems and its potential as an environmental proxy , 2008 .

[32]  M. Leng,et al.  Palaeotemperatures, polar ice-volume, and isotope stratigraphy (Mg/Ca, δ18O, δ13C, 87Sr/86Sr): The Early Cretaceous (Berriasian, Valanginian, Hauterivian) , 2007 .

[33]  Á. Guerra ECOLOGY OF SEPIA OFFICINALIS , 2006 .

[34]  A. Fallick,et al.  Shell structure, patterns and trends of oxygen and carbon stable isotopes in modern brachiopod shells , 2005 .

[35]  P. Visscher,et al.  Microbial mats as bioreactors: populations, processes, and products , 2005 .

[36]  H. Massonne,et al.  Ilmenite exsolution in olivine from the serpentinite body at Zöblitz, Saxonian Erzgebirge – microstructural evidence using EBSD , 2005, Mineralogical magazine.

[37]  S. Robles,et al.  Elemental and Oxygen Isotope Composition of Early Jurassic Belemnites: Salinity vs. Temperature Signals , 2004 .

[38]  S. Robles,et al.  Paleotemperature variations of Early Jurassic seawater recorded in geochemical trends of belemnites from the Basque-Cantabrian basin, northern Spain , 2004 .

[39]  H. Wierzbowski Carbon and oxygen isotope composition of Oxfordian–Early Kimmeridgian belemnite rostra: palaeoenvironmental implications for Late Jurassic seas , 2004 .

[40]  J. Osán,et al.  Investigation of chemical composition of belemnite rostra by synchrotron-based X-ray microfluorescence and diffraction and electron microprobe , 2004 .

[41]  A. Longinelli,et al.  δ18O(PO43−) and δ18O(CO32−) from belemnite guards from Eastern Europe: implications for palaeoceanographic reconstructions and for the preservation of pristine isotopic values , 2003 .

[42]  S. Voigt,et al.  Cenomanian palaeotemperatures derived from the oxygen isotopic composition of brachiopods and belemnites: evaluation of Cretaceous palaeotemperature proxies , 2003 .

[43]  D. Schrag,et al.  Paleoceanography of the Late Cretaceous (Maastrichtian) Western Interior Seaway of North America: evidence from Sr and O isotopes , 2003 .

[44]  J. Götze,et al.  Progress in application of cathodoluminescence (CL) in sedimentary petrology , 2003 .

[45]  P. Iacumin,et al.  δ 18 O of carbonate, quartz and phosphate from belemnite guards: implications for the isotopic record of old fossils and the isotopic composition of ancient seawater , 2002 .

[46]  S. Robles,et al.  Primary and diagenetic isotopic signals in fossils and hemipelagic carbonates: the Lower Jurassic of northern Spain , 2001 .

[47]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[48]  Daniel Chateigner,et al.  Mollusc shell microstructures and crystallographic textures , 2000 .

[49]  K. Sherrard Cuttlebone morphology limits habitat depth in eleven species of Sepia (Cephalopoda: Sepiidae). , 2000, The Biological bulletin.

[50]  G. Clark Organic matrix taphonomy in some molluscan shell microstructures , 1999 .

[51]  B. Sellwood,et al.  “Warm” palaeotemperatures from high Late Jurassic palaeolatitudes (Falkland Plateau): Ecological, environmental or diagenetic controls? , 1997 .

[52]  A. Arkhipkin,et al.  Morphology and microstructure of the gladius and statolith from the boreal Pacific giant squid Moroteuthis robusta (Oegopsida; Onychoteuthidae) , 1997 .

[53]  D. Pirrie,et al.  Middle–Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients: Discussion and reply , 1996 .

[54]  D. Hodell,et al.  Middle–Late Cretaceous climate of the southern high latitudes: Stable isotopic evidence for minimal equator-to-pole thermal gradients , 1995 .

[55]  A. Seilacher,et al.  Remote biomineralization 2: fill skeletons controlling buoyancy in shelled cephalopods , 1993 .

[56]  V. Barbin Fluctuation in shell composition in Nautilus (Cephalopoda, Mollusca): evidence from cathodoluminescence , 1992 .

[57]  M. Oti,et al.  Diagenetic transformation of magnesium calcite in a monocrystalline rock-forming carbonate skeleton of an echinoderm , 1989 .

[58]  G. Sælen Diagenesis and construction of the belemnite rostrum , 1989 .

[59]  R. Francois A study of sulphur enrichment in the humic fraction of marine sediments during early diagenesis , 1987 .

[60]  N. L. Thomas,et al.  On the architecture and function of cuttlefish bone , 1983 .

[61]  Christian Spaeth Zur Frage der Schwimmverhältnisse bei Belemniten in Abhängigkeit vom Primärgefüge der Hartteile , 1975 .

[62]  Christian Spaeth Weitere untersuchungen der primär- und fremdstrukturen in calcitischen und aragonitischen schalenlagen englischer unterkreide-belemniten , 1973 .

[63]  Christian Spaeth Aragonitische und calcitische Primärstrukturen im Schalenbau eines Belemniten aus der englischen Unterkreide , 1971 .

[64]  G. Stevens The Jurassic and Cretaceous belemnites of New Zealand and a review of the Jurassic and Cretaceous belemnites of the Indo-Pacific region , 1965 .

[65]  Hanns Müller-Stoll Beiträge zur Anatomie der Belemnoidea , 1936 .