Multivariate exponential analysis from the minimal number of samples

The problem of multivariate exponential analysis or sparse interpolation has received a lot of attention, especially with respect to the number of samples required to solve it unambiguously. In this paper we show how to bring the number of samples down to the absolute minimum of (d + 1)n where d is the dimension of the problem and n is the number of exponential terms. To this end we present a fundamentally different approach for the multivariate problem statement. We combine a one-dimensional exponential analysis method such as ESPRIT, MUSIC, the matrix pencil or any Prony-like method, with some linear systems of equations because the multivariate exponents are inner products and thus linear expressions in the parameters.

[1]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[2]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[3]  Stéphanie Rouquette-Léveil,et al.  Estimation of frequencies and damping factors by two-dimensional ESPRIT type methods , 2001, IEEE Trans. Signal Process..

[4]  Tapan K. Sarkar,et al.  Matrix pencil method for simultaneously estimating azimuth and elevation angles of arrival along with the frequency of the incoming signals , 2006, Digit. Signal Process..

[5]  Ulrich von der Ohe,et al.  A multivariate generalization of Prony's method , 2015, 1506.00450.

[6]  Erich Kaltofen,et al.  Early termination in sparse interpolation algorithms , 2003, J. Symb. Comput..

[7]  G. Plonka,et al.  How many Fourier samples are needed for real function reconstruction? , 2013 .

[8]  Wen-shin Lee,et al.  Sparse interpolation and rational approximation , 2016 .

[9]  Pier Luigi Dragotti,et al.  Sampling Schemes for Multidimensional Signals With Finite Rate of Innovation , 2007, IEEE Transactions on Signal Processing.

[10]  D. Potts,et al.  Parameter estimation for nonincreasing exponential sums by Prony-like methods , 2013 .

[11]  K. J. Liu,et al.  A high-resolution technique for multidimensional NMR spectroscopy , 1998, IEEE Transactions on Biomedical Engineering.

[12]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[13]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[14]  Yingbo Hua Estimating two-dimensional frequencies by matrix enhancement and matrix pencil , 1992, IEEE Trans. Signal Process..

[15]  Tomas Sauer Prony's method in several variables: Symbolic solutions by universal interpolation , 2018, J. Symb. Comput..

[16]  George A. Baker,et al.  Pade approximants. Part 1: Basic theory , 1981 .

[17]  Armin Iske,et al.  Parameter estimation for bivariate exponential sums , 2015, 2015 International Conference on Sampling Theory and Applications (SampTA).

[18]  Tomas Sauer Prony’s method in several variables , 2017, Numerische Mathematik.

[19]  D. Potts,et al.  Parameter estimation for multivariate exponential sums , 2011 .

[20]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[21]  Michael Ben-Or,et al.  A deterministic algorithm for sparse multivariate polynomial interpolation , 1988, STOC '88.

[22]  Tapan K. Sarkar,et al.  Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..

[23]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[24]  Gerlind Plonka-Hoch,et al.  Reconstruction of polygonal shapes from sparse Fourier samples , 2016, J. Comput. Appl. Math..

[25]  A. J. Shaka,et al.  The multidimensional filter diagonalization method. , 2000, Journal of magnetic resonance.

[26]  H. Nyquist,et al.  Certain Topics in Telegraph Transmission Theory , 1928, Transactions of the American Institute of Electrical Engineers.