Multivariate exponential analysis from the minimal number of samples
暂无分享,去创建一个
[1] Arnold Neumaier,et al. Introduction to Numerical Analysis , 2001 .
[2] C.E. Shannon,et al. Communication in the Presence of Noise , 1949, Proceedings of the IRE.
[3] Stéphanie Rouquette-Léveil,et al. Estimation of frequencies and damping factors by two-dimensional ESPRIT type methods , 2001, IEEE Trans. Signal Process..
[4] Tapan K. Sarkar,et al. Matrix pencil method for simultaneously estimating azimuth and elevation angles of arrival along with the frequency of the incoming signals , 2006, Digit. Signal Process..
[5] Ulrich von der Ohe,et al. A multivariate generalization of Prony's method , 2015, 1506.00450.
[6] Erich Kaltofen,et al. Early termination in sparse interpolation algorithms , 2003, J. Symb. Comput..
[7] G. Plonka,et al. How many Fourier samples are needed for real function reconstruction? , 2013 .
[8] Wen-shin Lee,et al. Sparse interpolation and rational approximation , 2016 .
[9] Pier Luigi Dragotti,et al. Sampling Schemes for Multidimensional Signals With Finite Rate of Innovation , 2007, IEEE Transactions on Signal Processing.
[10] D. Potts,et al. Parameter estimation for nonincreasing exponential sums by Prony-like methods , 2013 .
[11] K. J. Liu,et al. A high-resolution technique for multidimensional NMR spectroscopy , 1998, IEEE Transactions on Biomedical Engineering.
[12] Thomas Kailath,et al. ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..
[13] Richard Zippel,et al. Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.
[14] Yingbo Hua. Estimating two-dimensional frequencies by matrix enhancement and matrix pencil , 1992, IEEE Trans. Signal Process..
[15] Tomas Sauer. Prony's method in several variables: Symbolic solutions by universal interpolation , 2018, J. Symb. Comput..
[16] George A. Baker,et al. Pade approximants. Part 1: Basic theory , 1981 .
[17] Armin Iske,et al. Parameter estimation for bivariate exponential sums , 2015, 2015 International Conference on Sampling Theory and Applications (SampTA).
[18] Tomas Sauer. Prony’s method in several variables , 2017, Numerische Mathematik.
[19] D. Potts,et al. Parameter estimation for multivariate exponential sums , 2011 .
[20] R. O. Schmidt,et al. Multiple emitter location and signal Parameter estimation , 1986 .
[21] Michael Ben-Or,et al. A deterministic algorithm for sparse multivariate polynomial interpolation , 1988, STOC '88.
[22] Tapan K. Sarkar,et al. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise , 1990, IEEE Trans. Acoust. Speech Signal Process..
[23] Henry C. Thacher,et al. Applied and Computational Complex Analysis. , 1988 .
[24] Gerlind Plonka-Hoch,et al. Reconstruction of polygonal shapes from sparse Fourier samples , 2016, J. Comput. Appl. Math..
[25] A. J. Shaka,et al. The multidimensional filter diagonalization method. , 2000, Journal of magnetic resonance.
[26] H. Nyquist,et al. Certain Topics in Telegraph Transmission Theory , 1928, Transactions of the American Institute of Electrical Engineers.