Kaskade 7 - A flexible finite element toolbox

Abstract Kaskade 7 is a finite element toolbox for the solution of stationary or transient systems of partial differential equations, aimed at supporting application-oriented research in numerical analysis and scientific computing. The library is written in C++ and is based on the Dune interface. The code is independent of spatial dimension and works with different grid managers. An important feature is the mix-and-match approach to discretizing systems of PDEs with different ansatz and test spaces for all variables. We describe the mathematical concepts behind the library as well as its structure, illustrating its use at several examples on the way.

[1]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[2]  Martin Weiser,et al.  Optimal design of experiments for estimating the time of death in forensic medicine , 2018, Inverse Problems.

[3]  Stefan Zachow,et al.  Automatic CT-based finite element model generation for temperature-based death time estimation: feasibility study and sensitivity analysis , 2017, International Journal of Legal Medicine.

[4]  Jens Lang,et al.  Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin Adaptivity in Space and Time for Reaction-diffusion Systems in Electrocardiology Adaptivity in Space and Time for Reaction-diffusion Systems in Electrocardiology , 2022 .

[5]  Anton Schiela,et al.  On the control of time discretized dynamic contact problems , 2017, Comput. Optim. Appl..

[6]  Andreas Dedner,et al.  The DUNE Framework: Basic Concepts and Recent Developments , 2019, Comput. Math. Appl..

[7]  Michael L. Minion,et al.  TOWARD AN EFFICIENT PARALLEL IN TIME METHOD FOR PARTIAL DIFFERENTIAL EQUATIONS , 2012 .

[8]  L. Morley The Triangular Equilibrium Element in the Solution of Plate Bending Problems , 1968 .

[9]  C. Maierhofer,et al.  Determining the material parameters for the reconstruction of defects in carbon fiber reinforced polymers from data measured by flash thermography , 2017 .

[10]  Anton Schiela,et al.  An affine covariant composite step method for optimization with PDEs as equality constraints , 2017, Optim. Methods Softw..

[11]  Sebastian Götschel,et al.  Solving Optimal Control Problems with the Kaskade 7 Finite Element Toolbox , 2012 .

[12]  Sebastian Götschel,et al.  State Trajectory Compression for Optimal Control with Parabolic PDEs , 2012, SIAM J. Sci. Comput..

[13]  L. Greengard,et al.  Spectral Deferred Correction Methods for Ordinary Differential Equations , 2000 .

[14]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[15]  Martin Weiser,et al.  Barrier Methods for a Control Problem from Hyperthermia Treatment Planning , 2010 .

[16]  P. Deuflhard,et al.  Extrapolation Integrators for Quasilinear Implicit ODEs , 1987 .

[17]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[18]  Harry Yserentant,et al.  On the multi-level splitting of finite element spaces , 1986 .

[19]  Martin Weiser Pointwise nonlinear scaling for reaction--diffusion equations , 2009 .

[20]  Sebastian Götschel,et al.  Lossy compression for PDE-constrained optimization: adaptive error control , 2015, Comput. Optim. Appl..

[21]  Olaf Schenk,et al.  Inertia-Revealing Preconditioning For Large-Scale Nonconvex Constrained Optimization , 2008, SIAM J. Sci. Comput..

[22]  Boris Schling The Boost C++ Libraries , 2011 .

[23]  Peter Deuflhard,et al.  Mathematical Cancer Therapy Planning in Deep Regional Hyperthermia 1 , 2011 .

[24]  Luca F. Pavarino,et al.  Mathematical cardiac electrophysiology/ Piero Colli Franzone, Luca F. Pavarino, Simone Scacchi , 2014 .

[25]  A. McCulloch,et al.  A collocation-Galerkin finite element model of cardiac action potential propagation , 1994, IEEE Transactions on Biomedical Engineering.

[26]  Martin Weiser,et al.  An Optimal Control Problem in Polyconvex Hyperelasticity , 2014, SIAM J. Control. Optim..

[27]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[28]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[29]  Sebastian Götschel,et al.  Lossy data compression reduces communication time in hybrid time-parallel integrators , 2018, Comput. Vis. Sci..

[30]  Mark G. Blyth,et al.  A Lobatto interpolation grid over the triangle , 2006 .

[31]  Andreas Dedner,et al.  The Distributed and Unified Numerics Environment,Version 2.4 , 2016 .

[32]  Peter Deuflhard,et al.  Adaptive Numerical Solution of PDEs , 2012 .

[33]  Martin Weiser,et al.  A control reduced primal interior point method for a class of control constrained optimal control problems , 2008, Comput. Optim. Appl..

[34]  Lars Grüne,et al.  Sensitivity Analysis of Optimal Control for a Class of Parabolic PDEs Motivated by Model Predictive Control , 2019, SIAM J. Control. Optim..

[35]  Karl Kunisch,et al.  Lossy Compression in Optimal Control of Cardiac Defibrillation , 2014, J. Sci. Comput..

[36]  G. Zumbusch Symmetric hierarchical polynomials and the adaptive h-p-version , 2011 .

[37]  Martin Weiser,et al.  Faster SDC convergence on non-equidistant grids by DIRK sweeps , 2015 .

[38]  M. Puso,et al.  A 3D contact smoothing method using Gregory patches , 2002 .

[39]  Andreas Günther,et al.  An interior point algorithm with inexact step computation in function space for state constrained optimal control , 2011, Numerische Mathematik.

[40]  Christoph von Tycowicz,et al.  Reducing Memory Requirements in Scientific Computing and Optimal Control , 2013 .

[41]  Martin Weiser,et al.  On goal-oriented adaptivity for elliptic optimal control problems , 2013, Optim. Methods Softw..

[42]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[43]  Peter Bastian,et al.  The Iterative Solver Template Library , 2006, PARA.

[44]  Sandeep Koranne,et al.  Boost C++ Libraries , 2011 .

[45]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE , 2008, Computing.

[46]  Mark L. Trew,et al.  Construction and Validation of a Plunge Electrode Array for Three-Dimensional Determination of Conductivity in the Heart , 2008, IEEE Transactions on Biomedical Engineering.

[47]  Utkarsh Ayachit,et al.  The ParaView Guide: A Parallel Visualization Application , 2015 .

[48]  Martin Weiser,et al.  Optimization and Identification in Regional Hyperthermia , 2009 .

[49]  Stefan Zachow,et al.  Uncertainty in temperature-based determination of time of death , 2018 .

[50]  Simone Scacchi,et al.  Spectral Deferred Correction Methods for Adaptive Electro-Mechanical Coupling in Cardiac Simulation , 2014 .

[51]  Florian Wende,et al.  Impact of mixed precision and storage layout on additive Schwarz smoothers , 2021, Numer. Linear Algebra Appl..

[52]  P. Deuflhard,et al.  Adaptive finite element simulation of ventricular fibrillation dynamics , 2009 .

[53]  Peter Deuflhard,et al.  Concepts of an adaptive hierarchical finite element code , 1989, IMPACT Comput. Sci. Eng..

[54]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework , 2008, Computing.

[55]  J. Pasciak,et al.  Parallel multilevel preconditioners , 1990 .

[56]  G. Nielson,et al.  A Parametric Triangular Patch Based on Generalized Conics , 1991 .

[57]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .