Two-Level Discretization Techniques for Ground State Computations of Bose-Einstein Condensates

This work presents a new methodology for computing ground states of Bose--Einstein condensates based on finite element discretizations on two different scales of numerical resolution. In a preprocessing step, a low-dimensional (coarse) generalized finite element space is constructed. It is based on a local orthogonal decomposition of the solution space and exhibits high approximation properties. The nonlinear eigenvalue problem that characterizes the ground state is solved by some suitable iterative solver exclusively in this low-dimensional space, without significant loss of accuracy when compared with the solution of the full fine scale problem. The preprocessing step is independent of the types and numbers of bosons. A postprocessing step further improves the accuracy of the method. We present rigorous a priori error estimates that predict convergence rates $H^3$ for the ground state eigenfunction and $H^4$ for the corresponding eigenvalue without pre-asymptotic effects; $H$ being the coarse scale discretization parameter. Numerical experiments indicate that these high rates may still be pessimistic.

[1]  C. Carstensen QUASI-INTERPOLATION AND A POSTERIORI ERROR ANALYSIS IN FINITE ELEMENT METHODS , 1999 .

[2]  A. Einstein Quantentheorie des einatomigen idealen Gases , 2006 .

[3]  Daniel Elfverson,et al.  Convergence of a Discontinuous Galerkin Multiscale Method , 2012, SIAM J. Numer. Anal..

[4]  Yvon Maday,et al.  Numerical Analysis of Nonlinear Eigenvalue Problems , 2009, J. Sci. Comput..

[5]  Mechthild Thalhammer,et al.  A minimisation approach for computing the ground state of Gross-Pitaevskii systems , 2009, J. Comput. Phys..

[6]  Sauro Succi,et al.  Particle-inspired scheme for the Gross-Pitaevski equation: An application to Bose-Einstein condensation , 2000 .

[7]  Eric Cancès,et al.  Ground state of the time-independent Gross-Pitaevskii equation , 2007, Comput. Phys. Commun..

[8]  Daniel Peterseim,et al.  Multiscale Partition of Unity , 2013, 1312.5922.

[9]  A. Aspect,et al.  Bose-Einstein Condensates and Atom Lasers , 2013 .

[10]  Succi,et al.  Ground state of trapped interacting bose-einstein condensates by an explicit imaginary-time algorithm , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  Elliott H. Lieb,et al.  Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional , 1999, math-ph/9908027.

[12]  A. Leggett,et al.  Josephson effect between trapped Bose-Einstein condensates , 1997, cond-mat/9707143.

[13]  Weizhu Bao,et al.  Ground-state solution of Bose--Einstein condensate by directly minimizing the energy functional , 2003 .

[14]  Víctor M. Pérez-García,et al.  Optimizing Schrödinger Functionals Using Sobolev Gradients: Applications to Quantum Mechanics and Nonlinear Optics , 2001, SIAM J. Sci. Comput..

[15]  Claude Le Bris,et al.  Mathematical models and methods for ab initio quantum chemistry , 2000 .

[16]  Qiang Du,et al.  Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams in the Thomas-Fermi regime , 2001 .

[17]  Eric Canccs Scf Algorithms for Hartree-fock Electronic Calculations , 2022 .

[18]  W. Ketterle,et al.  Observation of Metastable States in Spinor Bose-Einstein Condensates , 1999 .

[19]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[20]  Daniel Peterseim,et al.  Localization of elliptic multiscale problems , 2011, Math. Comput..

[21]  Wolfgang Ketterle,et al.  COHERENCE PROPERTIES OF BOSE-EINSTEIN CONDENSATES AND ATOM LASERS , 1997 .

[22]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[23]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[24]  C.-S. Chien,et al.  Two-grid discretization schemes for nonlinear Schrödinger equations , 2008 .

[25]  P. Henning,et al.  A localized orthogonal decomposition method for semi-linear elliptic problems , 2012, 1211.3551.

[26]  Aihui Zhou An analysis of finite-dimensional approximations for the ground state solution of Bose?Einstein condensates , 2004 .

[27]  Huajie Chen,et al.  Numerical approximations of a nonlinear eigenvalue problem and applications to a density functional model , 2010 .

[28]  Wolfgang Ketterle,et al.  Bose-Einstein Condensation: Identity Crisis for Indistinguishable Particles , 2007 .

[29]  C. Wieman,et al.  Achieving steady-state Bose-Einstein condensation , 1998 .

[30]  Weizhu Bao,et al.  Optimal error estimates of finite difference methods for the Gross-Pitaevskii equation with angular momentum rotation , 2012, Math. Comput..

[31]  Jie Shen,et al.  A generalized-Laguerre-Hermite pseudospectral method for computing symmetric and central vortex states in Bose-Einstein condensates , 2008, J. Comput. Phys..

[32]  I-Liang Chern,et al.  BOSE-EINSTEIN CONDENSATION , 2021, Structural Aspects of Quantum Field Theory and Noncommutative Geometry.

[33]  Daniel Peterseim,et al.  A rigorous Multiscale Method for semi-linear elliptic problems , 2012 .

[34]  Daniel Peterseim,et al.  Computation of eigenvalues by numerical upscaling , 2012, Numerische Mathematik.

[36]  B. I. Schnieder,et al.  Numerical approach to the ground and excited states of a Bose-Einstein condensed gas confined in a completely anisotropic trap , 1999 .

[37]  Daniel Peterseim,et al.  Oversampling for the Multiscale Finite Element Method , 2012, Multiscale Model. Simul..

[38]  Qiang Du,et al.  Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..

[39]  C. Bris,et al.  Can we outperform the DIIS approach for electronic structure calculations , 2000 .

[40]  Ionut Danaila,et al.  A New Sobolev Gradient Method for Direct Minimization of the Gross--Pitaevskii Energy with Rotation , 2009, SIAM J. Sci. Comput..

[41]  E. Gross Structure of a quantized vortex in boson systems , 1961 .

[42]  Li Wei-dong,et al.  Stability Diagrams of a Bose–Einstein Condensate in a Periodic Array of Quantum Wells , 2009 .

[43]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[44]  Bose Plancks Gesetz und Lichtquantenhypothese , 1924 .

[45]  Ionut Danaila,et al.  Giant vortices in combined harmonic and quartic traps (6 pages) , 2004 .

[46]  Ionut Danaila,et al.  Three-dimensional vortex configurations in a rotating Bose Einstein condensate , 2003 .

[47]  Weizhu Bao,et al.  Ground, Symmetric and Central Vortex States in Rotating Bose-Einstein Condensates , 2005 .