Effective-index method and coupled-mode theory for almost-periodic waveguide gratings: a comparison.

Contradirectional propagation through active, first-order, almost-periodic, corrugated waveguide gratings is analyzed by using both coupled-mode theory and a combined effective-index/impedance-matching matrix technique. For TE-mode operation, which is near the first-order Bragg wavelength, the equivalence of the two techniques is analytically demonstrated for shallow surface corrugations.

[1]  D. Hall,et al.  Analysis of waveguide gratings: a comparison of the results of Rouard’s method and coupled-mode theory , 1987 .

[2]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[3]  S. K Chatterjee Book reviewTheory of Dielectric Optical Waveguides, by Dietrich Marcuse. 275 pages, diagrams, illustrations, 612× 912in. New York, Academic Press Inc., 1974. Price, $21.00. , 1978 .

[4]  F. Leonberger,et al.  Integrated optics , 1986, IEEE Journal of Quantum Electronics.

[5]  Charles V. Shank,et al.  Grating filters for thin‐film optical waveguides , 1974 .

[6]  A. Yariv,et al.  Theory of chirped gratings in broad band filters , 1977 .

[7]  H. Kogelnik,et al.  Coupled‐Wave Theory of Distributed Feedback Lasers , 1972 .

[8]  H. Kogelnik,et al.  Filter response of nonuniform almost-periodic structures , 1976, The Bell System Technical Journal.

[9]  Kim A. Winick,et al.  Design of corrugated waveguide filters by Fourier-transform techniques , 1990 .

[10]  Réal Tremblay,et al.  Application of the effective-index method to the study of distributed feedback in corrugated waveguides. TE polarization , 1980 .

[11]  H. Nishihara Optical integrated circuits , 1989 .

[12]  Dennis G. Hall,et al.  Analysis of waveguide gratings: application of Rouard's method , 1985 .

[13]  A Basu,et al.  Random fluctuations in first-order waveguide grating filters. , 1979, Applied optics.

[14]  J. Sipe,et al.  Possibilities for the observation of gap solitons in waveguide geometries , 1989 .

[15]  H. Haus,et al.  Antisymmetric taper of distributed feedback lasers , 1976, IEEE Journal of Quantum Electronics.

[16]  C. Tang,et al.  Phase‐matched second‐harmonic generation in solid thin films using modulation of the nonlinear susceptibilities , 1976 .

[17]  Amnon Yariv,et al.  Integrated Optics , 2019, The Microflow Cytometer.

[18]  H. Bertoni,et al.  Analysis of periodic thin-film structures with rectangular profiles☆ , 1974 .

[19]  Gunnar Björk,et al.  A new exact and efficient numerical matrix theory of complicated laser structures: properties of asymmetric phase-shifted DFB lasers , 1987 .

[20]  Shyh Wang Proposal of periodic layered waveguide structures for distributed lasers , 1972 .

[21]  Sang-Yung Shin,et al.  Design of corrugated waveguide filters by the Gel’fand–Levitan–Marchenko inverse-scattering method , 1985 .

[22]  Theodor Tamir,et al.  Theory of Periodic Dielect Waveguides , 1975 .

[23]  H. Kogelnik,et al.  Theory of Dielectric Waveguides , 1975 .

[24]  Lawrence Kuhn,et al.  ERRATA: GRATING COUPLER FOR EFFICIENT EXCITATION OF OPTICAL GUIDED WAVES IN THIN FILMS , 1970 .

[25]  Herbert G. Winful,et al.  Pulse compression in optical fiber filters , 1985 .

[26]  Masanori Matsuhara,et al.  Optical-waveguide filters: Synthesis , 1975 .

[27]  M. Yamada,et al.  Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach. , 1987, Applied optics.