Recent progress in electron transport layers for efficient perovskite solar cells

Thin-film photovoltaics based on organic–inorganic hybrid perovskite light absorbers have recently emerged as a promising low-cost solar energy harvesting technology. Over the past several years, we have witnessed a great and unexpected progress in organic–inorganic perovskite solar cells (PSCs). The power conversion efficiency (PCE) increased from 3.8% to 20.1% and exceeded the highest efficiency of conventional dye-sensitized solar cells. Here, the focus is specifically on the recent developments of the electron transport layer (ETL) in PSCs, which is an important part for high performing PSCs. This review briefly discusses the development of the structure of PSCs, and we attempt to give a systematic introduction about the optimization of ETL and its related interfaces for efficient PSCs. Moreover, the introduction of appropriate interfacial materials is another important issue to improve PSC performance by optimizing the interfacial electronic properties between the perovskite layer and the charge-collecting electrode. Besides, some related issues such as device stability and hysteresis behavior are also discussed here.

[1]  Chang Su Shim,et al.  Ultrathin Atomic Layer Deposited TiO2 for Surface Passivation of Hydrothermally Grown 1D TiO2 Nanorod Arrays for Efficient Solid-State Perovskite Solar Cells , 2015 .

[2]  Dane W. deQuilettes,et al.  Zr Incorporation into TiO2 Electrodes Reduces Hysteresis and Improves Performance in Hybrid Perovskite Solar Cells while Increasing Carrier Lifetimes. , 2015, The journal of physical chemistry letters.

[3]  Jia Xu,et al.  Efficient perovskite/fullerene planar heterojunction solar cells with enhanced charge extraction and suppressed charge recombination. , 2015, Nanoscale.

[4]  Tzung-Fang Guo,et al.  CH3NH3PbI3 Perovskite/Fullerene Planar‐Heterojunction Hybrid Solar Cells , 2013, Advanced materials.

[5]  G. Boschloo,et al.  Carbazole‐Based Hole‐Transport Materials for Efficient Solid‐State Dye‐Sensitized Solar Cells and Perovskite Solar Cells , 2014, Advanced materials.

[6]  Yixin Zhao,et al.  Mesoporous perovskite solar cells: material composition, charge-carrier dynamics, and device characteristics. , 2014, Faraday discussions.

[7]  Seong Sik Shin,et al.  Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature , 2015 .

[8]  L. Etgar,et al.  Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells. , 2014, Physical chemistry chemical physics : PCCP.

[9]  Alex K.-Y. Jen,et al.  Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells , 2015 .

[10]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[11]  K. Schierbaum,et al.  The structure and electrical conductivity of vacuum-annealed WO3 thin films , 2004 .

[12]  Y. Mao,et al.  Effect of solvents on the growth of TiO2 nanorods and their perovskite solar cells , 2015 .

[13]  Mohammad Khaja Nazeeruddin,et al.  Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field , 2015 .

[14]  C. Brabec,et al.  Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance , 2015 .

[15]  Nripan Mathews,et al.  High efficiency electrospun TiO₂ nanofiber based hybrid organic-inorganic perovskite solar cell. , 2014, Nanoscale.

[16]  Michael Grätzel,et al.  Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[17]  M. Nazeeruddin,et al.  Metal‐Oxide‐Free Methylammonium Lead Iodide Perovskite‐Based Solar Cells: the Influence of Organic Charge Transport Layers , 2014 .

[18]  Jiang Liu,et al.  Highly efficient fullerene/perovskite planar heterojunction solar cells via cathode modification with an amino-functionalized polymer interlayer , 2014 .

[19]  Hyun Suk Jung,et al.  Highly efficient and bending durable perovskite solar cells: toward a wearable power source , 2015 .

[20]  Hong Zhang,et al.  Insight into Perovskite Solar Cells Based on SnO 2 Compact Electron- Selective Layer , 2015 .

[21]  Fuzhi Huang,et al.  Thin Films of Dendritic Anatase Titania Nanowires Enable Effective Hole‐Blocking and Efficient Light‐Harvesting for High‐Performance Mesoscopic Perovskite Solar Cells , 2015 .

[22]  Dong Yang,et al.  High efficiency flexible perovskite solar cells using superior low temperature TiO2 , 2015 .

[23]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[24]  Yang Yang,et al.  Moisture assisted perovskite film growth for high performance solar cells , 2014 .

[25]  Nam-Gyu Park,et al.  Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. , 2015, Journal of the American Chemical Society.

[26]  Aldo Di Carlo,et al.  High efficiency CH3NH3PbI(3−x)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layer , 2014 .

[27]  Sung Cheol Yoon,et al.  Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells , 2014 .

[28]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[29]  Qingshun Dong,et al.  Low-Temperature and Solution-Processed Amorphous WO(x) as Electron-Selective Layer for Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[30]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[31]  H. Butt,et al.  Yttrium-substituted nanocrystalline TiO₂ photoanodes for perovskite based heterojunction solar cells. , 2014, Nanoscale.

[32]  Chunhui Huang,et al.  High-performance hybrid perovskite solar cells with polythiophene as hole-transporting layer via electrochemical polymerization , 2014 .

[33]  Ahmad R. Kirmani,et al.  Highly efficient perovskite solar cells based on a nanostructured WO3–TiO2 core–shell electron transporting material , 2015 .

[34]  Liming Ding,et al.  Solution-Processed Cu2O and CuO as Hole Transport Materials for Efficient Perovskite Solar Cells. , 2015, Small.

[35]  S. Uchida,et al.  Surface Treatment of the Compact TiO2 Layer for Efficient Planar Heterojunction Perovskite Solar Cells , 2015 .

[36]  Tae‐Woo Lee,et al.  Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers , 2016 .

[37]  Ningyi Yuan,et al.  The effect of ALD-Zno layers on the formation of CH₃NH₃PbI₃ with different perovskite precursors and sintering temperatures. , 2014, Chemical communications.

[38]  Michael Grätzel,et al.  Highly efficient planar perovskite solar cells through band alignment engineering , 2015 .

[39]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[40]  Nam-Gyu Park,et al.  11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System , 2014 .

[41]  M. Halik,et al.  Low‐Temperature and Hysteresis‐Free Electron‐Transporting Layers for Efficient, Regular, and Planar Structure Perovskite Solar Cells , 2015 .

[42]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[43]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[44]  Chiara Bertarelli,et al.  17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells , 2015 .

[45]  Alex K.-Y. Jen,et al.  Interfacial modification to improve inverted polymer solar cells , 2008 .

[46]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[47]  Timothy L. Kelly,et al.  Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO , 2015 .

[48]  Yang Yang,et al.  Improving the TiO2 electron transport layer in perovskite solar cells using acetylacetonate-based additives , 2015 .

[49]  C. Yuan,et al.  Enhanced photovoltaic performance of perovskite CH₃NH₃PbI₃ solar cells with freestanding TiO₂ nanotube array films. , 2014, Chemical communications.

[50]  Liwei Lin,et al.  Improved stability of perovskite solar cells in ambient air by controlling the mesoporous layer , 2015 .

[51]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[52]  P. Lund,et al.  Carbon-double-bond-free printed solar cells from TiO₂/CH₃NH₃PbI₃/CuSCN/Au: structural control and photoaging effects. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[53]  Young Chan Kim,et al.  o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. , 2014, Journal of the American Chemical Society.

[54]  L. Etgar,et al.  Organo-metal perovskite based solar cells: sensitized versus planar architecture , 2014 .

[55]  Xiaogang Han,et al.  Magnetically responsive photonic films with high tunability and stability , 2015, Nano Research.

[56]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[57]  T. Ma,et al.  Amorphous Inorganic Electron‐Selective Layers for Efficient Perovskite Solar Cells: Feasible Strategy Towards Room‐Temperature Fabrication , 2016, Advanced materials.

[58]  Alain Goriely,et al.  Morphological Control for High Performance, Solution‐Processed Planar Heterojunction Perovskite Solar Cells , 2014 .

[59]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[60]  Junwang Tang,et al.  Mesoporous SnO2 nanoparticle films as electron-transporting material in perovskite solar cells , 2015 .

[61]  Aram Amassian,et al.  16.1% Efficient Hysteresis‐Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays , 2015 .

[62]  Z. Yin,et al.  Highly efficient and stable planar heterojunction perovskite solar cells via a low temperature solution process , 2015 .

[63]  Use of Anodic TiO2 Nanotube Layers as Mesoporous Scaffolds for Fabricating CH3NH3PbI3 Perovskite‐Based Solid‐State Solar Cells , 2015, 1610.05043.

[64]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[65]  Garry Rumbles,et al.  Heterojunction modification for highly efficient organic-inorganic perovskite solar cells. , 2014, ACS nano.

[66]  Tae-Woo Lee,et al.  Planar CH3NH3PbI3 Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate , 2015, Advanced materials.

[67]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[68]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[69]  Michael D. McGehee,et al.  Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)₂ in perovskite and dye-sensitized solar cells. , 2014, Journal of the American Chemical Society.

[70]  Wei Zhang,et al.  Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells , 2015 .

[71]  H. Tao,et al.  Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer , 2015 .

[72]  Sandeep Kumar Pathak,et al.  Performance and Stability Enhancement of Dye‐Sensitized and Perovskite Solar Cells by Al Doping of TiO2 , 2014 .

[73]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.

[74]  Konrad Wojciechowski,et al.  C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[75]  Jegadesan Subbiah,et al.  Toward Large Scale Roll‐to‐Roll Production of Fully Printed Perovskite Solar Cells , 2015, Advanced materials.

[76]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[77]  Yu-Cheng Chang,et al.  p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells , 2014, Scientific Reports.

[78]  H. Tao,et al.  Efficient planar perovskite solar cells using room-temperature vacuum-processed C60 electron selective layers , 2015 .

[79]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.

[80]  Xiang Fang,et al.  Improvement of the humidity stability of organic–inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition , 2015 .

[81]  Moon-Sung Kang,et al.  Stable and efficient hole transporting materials with a dimethylfluorenylamino moiety for perovskite solar cells. , 2015, Chemical communications.

[82]  Xudong Guo,et al.  Interface engineering of perovskite solar cells with PEO for improved performance , 2015 .

[83]  Michael Grätzel,et al.  Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material , 2013 .

[84]  Juan Bisquert,et al.  Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. , 2013, Nano letters.

[85]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[86]  Nam-Gyu Park,et al.  Rutile TiO2-based perovskite solar cells , 2014 .

[87]  T. Miyasaka,et al.  Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells , 2015 .

[88]  H. Tao,et al.  Perovskite solar cell based on network nanoporous layer consisted of TiO2 nanowires and its interface optimization , 2015 .

[89]  Hyun Suk Jung,et al.  Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells. , 2014, Nanoscale.

[90]  Guozhong Cao,et al.  ZnO Nanostructures for Dye‐Sensitized Solar Cells , 2009 .

[91]  Miaoqiang Lyu,et al.  Stable and low-cost mesoscopic CH3NH3PbI2 Br perovskite solar cells by using a thin poly(3-hexylthiophene) layer as a hole transporter. , 2015, Chemistry.

[92]  G. Fang,et al.  Effects of annealing temperature of tin oxide electron selective layers on the performance of perovskite solar cells , 2015 .

[93]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[94]  N. Zheng,et al.  Thiols as interfacial modifiers to enhance the performance and stability of perovskite solar cells. , 2015, Nanoscale.

[95]  Dong Hoe Kim,et al.  Retarding charge recombination in perovskite solar cells using ultrathin MgO-coated TiO2 nanoparticulate films , 2015 .

[96]  Jinsong Huang,et al.  Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers , 2015 .

[97]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[98]  Nam-Gyu Park,et al.  Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer. , 2014, The journal of physical chemistry letters.

[99]  Aram Amassian,et al.  Core-shell heterostructured metal oxide arrays enable superior light-harvesting and hysteresis-free mesoscopic perovskite solar cells. , 2015, Nanoscale.

[100]  M. Johnston,et al.  Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3-xClx , 2014 .

[101]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[102]  Zach M. Beiley,et al.  Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20 , 2012 .

[103]  Juan Bisquert,et al.  Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis. , 2014, The journal of physical chemistry letters.

[104]  Xudong Yang,et al.  A dopant-free hole-transporting material for efficient and stable perovskite solar cells , 2014 .

[105]  Vidhya Chakrapani,et al.  Band‐Edge Engineered Hybrid Structures for Dye‐Sensitized Solar Cells Based on SnO2 Nanowires , 2008 .

[106]  Anders Hagfeldt,et al.  Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells. , 2013, The journal of physical chemistry letters.

[107]  Oleksandr Voznyy,et al.  Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes , 2015, Nature Communications.

[108]  Jinli Yang,et al.  Compact layer free perovskite solar cells with 13.5% efficiency. , 2014, Journal of the American Chemical Society.

[109]  F. So,et al.  High‐Efficiency Solution‐Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer , 2015 .

[110]  Alex K.-Y. Jen,et al.  High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. , 2013, Nano letters.

[111]  Peng Gao,et al.  Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. , 2014, Nano letters.

[112]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[113]  Dong Hoe Kim,et al.  Epitaxial 1D electron transport layers for high-performance perovskite solar cells. , 2015, Nanoscale.

[114]  T. Sugiura,et al.  Mg-doped TiO2 nanorods improving open-circuit voltages of ammonium lead halide perovskite solar cells , 2014 .

[115]  Bert Conings,et al.  Perovskite‐Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach , 2014, Advanced materials.

[116]  C. Brabec,et al.  Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer , 2014 .

[117]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[118]  Yang Yang,et al.  Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process , 2015 .

[119]  Licheng Sun,et al.  Recent Progress on Hole‐Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells , 2015 .

[120]  T. Ma,et al.  A dual functional additive for the HTM layer in perovskite solar cells. , 2014, Chemical communications.

[121]  Fujun Zhang,et al.  Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic–inorganic halide perovskites , 2015 .

[122]  Leeyih Wang,et al.  Enhancing the photocurrent of perovskite solar cells via modification of the TiO2/CH3NH3PbI3 heterojunction interface with amino acid , 2015 .

[123]  Fenggong Wang,et al.  Rational Band Gap Engineering of WO3 Photocatalyst for Visible light Water Splitting , 2012 .

[124]  Q. Meng,et al.  Energy level tuning of TPB-based hole-transporting materials for highly efficient perovskite solar cells. , 2014, Chemical communications.

[125]  Rui Zhu,et al.  Engineering of electron-selective contact for perovskite solar cells with efficiency exceeding 15%. , 2014, ACS nano.

[126]  H. Momose,et al.  Control of charge dynamics through a charge-separation interface for all-solid perovskite-sensitized solar cells. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[127]  Konrad Wojciechowski,et al.  Sub-150 °C processed meso-superstructured perovskite solar cells with enhanced efficiency , 2014 .

[128]  S. Hsiao,et al.  Efficient and Uniform Planar‐Type Perovskite Solar Cells by Simple Sequential Vacuum Deposition , 2014, Advanced materials.

[129]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[130]  Yanhong Luo,et al.  Controlling the conduction band offset for highly efficient ZnO nanorods based perovskite solar cell , 2015 .

[131]  T. Chen,et al.  Perovskite photovoltaics: a high-efficiency newcomer to the solar cell family. , 2014, Nanoscale.

[132]  Linfeng Liu,et al.  Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. , 2015, Journal of the American Chemical Society.

[133]  Yanhong Luo,et al.  Modified two-step deposition method for high-efficiency TiO2/CH3NH3PbI3 heterojunction solar cells. , 2014, ACS applied materials & interfaces.

[134]  Edward H. Sargent,et al.  A two-step route to planar perovskite cells exhibiting reduced hysteresis , 2015 .

[135]  Nripan Mathews,et al.  Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. , 2013, Chemical communications.

[136]  Q. Gong,et al.  Morphology control of the perovskite films for efficient solar cells. , 2015, Dalton transactions.

[137]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[138]  M. Nazeeruddin,et al.  Efficient perovskite solar cells with 13.63 % efficiency based on planar triphenylamine hole conductors. , 2014, Chemistry.

[139]  T. Ma,et al.  All-Solid Perovskite Solar Cells with HOCO-R-NH3+I– Anchor-Group Inserted between Porous Titania and Perovskite , 2014 .

[140]  Furkan H. Isikgor,et al.  Efficiency enhancement of planar perovskite solar cells by adding zwitterion/LiF double interlayers for electron collection. , 2015, Nanoscale.

[141]  Seong Sik Shin,et al.  High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C , 2015, Nature Communications.

[142]  H. Tao,et al.  Efficient hole-blocking layer-free planar halide perovskite thin-film solar cells , 2015, Nature Communications.

[143]  X. Zhang,et al.  Sn-doped TiO2 nanorod arrays and application in perovskite solar cells , 2014 .

[144]  S. Haque,et al.  Improved environmental stability of organic lead trihalide perovskite-based photoactive-layers in the presence of mesoporous TiO2 , 2015 .

[145]  Tao Song,et al.  High-performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering , 2014, Nano Research.

[146]  Chun-Guey Wu,et al.  Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process , 2014 .

[147]  Yanhong Luo,et al.  Highly efficient planar perovskite solar cells with a TiO2/ZnO electron transport bilayer , 2015 .

[148]  Alex K.-Y. Jen,et al.  Self-assembled monolayer modified ZnO/metal bilayer cathodes for polymer/fullerene bulk-heterojunction solar cells , 2008 .

[149]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[150]  Yang Yang,et al.  Interface investigation and engineering – achieving high performance polymer photovoltaic devices , 2010 .

[151]  Alex K.-Y. Jen,et al.  Interface Engineering for Organic Electronics , 2010, Advanced Functional Materials.

[152]  Lioz Etgar,et al.  Depleted hole conductor-free lead halide iodide heterojunction solar cells , 2013 .

[153]  Fan Zuo,et al.  Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells , 2014, Advanced materials.

[154]  Wei Zhang,et al.  Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al2O3 Buffer Layer. , 2015, The journal of physical chemistry letters.

[155]  Andrew C. Grimsdale,et al.  Perovskite-based solar cells: impact of morphology and device architecture on device performance , 2015 .

[156]  Jinsong Huang,et al.  Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process , 2014 .

[157]  Tao Chen,et al.  Layer‐by‐Layer Growth of CH3NH3PbI3−xClx for Highly Efficient Planar Heterojunction Perovskite Solar Cells , 2015, Advanced materials.

[158]  Hongzheng Chen,et al.  Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. , 2015, Journal of the American Chemical Society.

[159]  H. Tao,et al.  Perovskite solar cell with an efficient TiO₂ compact film. , 2014, ACS applied materials & interfaces.

[160]  H. Lee,et al.  Polyfluorene Derivatives are High‐Performance Organic Hole‐Transporting Materials for Inorganic−Organic Hybrid Perovskite Solar Cells , 2014 .

[161]  Yunlong Li,et al.  Stable high-performance hybrid perovskite solar cells with ultrathin polythiophene as hole-transporting layer , 2015, Nano Research.

[162]  Mohammad Khaja Nazeeruddin,et al.  Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency , 2014, Nature Communications.

[163]  Hongwei Lei,et al.  Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. , 2015, Journal of the American Chemical Society.

[164]  Teng Zhang,et al.  High-performance hole-extraction layer of sol-gel-processed NiO nanocrystals for inverted planar perovskite solar cells. , 2014, Angewandte Chemie.

[165]  Nam-Gyu Park,et al.  High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. , 2013, Nano letters.

[166]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[167]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.