Ultracold hydrogen atoms: a versatile coolant to produce ultracold molecules.

We show theoretically that ultracold hydrogen atoms have very favorable properties for sympathetic cooling of molecules to microkelvin temperatures. We calculate the potential energy surfaces for spin-polarized interactions of H atoms with the prototype molecules NH(3Σ-) and OH(2Π) and show that they are shallow (50 to 80  cm(-1)) and only weakly anisotropic. We carry out quantum collision calculations on H+NH and H+OH and show that the ratio of elastic to inelastic cross sections is high enough to allow sympathetic cooling from temperatures well over 1 K for NH and around 250 mK for OH.