On the stability and extension of reduced-order Galerkin models in incompressible flows

Proper orthogonal decomposition (POD) has been used to develop a reduced-order model of the hydrodynamic forces acting on a circular cylinder. Direct numerical simulations of the incompressible Navier–Stokes equations have been performed using a parallel computational fluid dynamics (CFD) code to simulate the flow past a circular cylinder. Snapshots of the velocity and pressure fields are used to calculate the divergence-free velocity and pressure modes, respectively. We use the dominant of these velocity POD modes (a small number of eigenfunctions or modes) in a Galerkin procedure to project the Navier–Stokes equations onto a low-dimensional space, thereby reducing the distributed-parameter problem into a finite-dimensional nonlinear dynamical system in time. The solution of the reduced dynamical system is a limit cycle corresponding to vortex shedding. We investigate the stability of the limit cycle by using long-time integration and propose to use a shooting technique to home on the system limit cycle. We obtain the pressure-Poisson equation by taking the divergence of the Navier–Stokes equation and then projecting it onto the pressure POD modes. The pressure is then decomposed into lift and drag components and compared with the CFD results.

[1]  Siva S. Banda,et al.  Optimal Feedback Control of Vortex Shedding Using Proper Orthogonal Decomposition Models , 2001 .

[2]  Søren Nielsen,et al.  Energy Balanced Double Oscillator Model for Vortex-Induced Vibrations , 1999 .

[3]  Steven A. Orszag,et al.  Transition to turbulence in plane Poiseuille and plane Couette flow , 1980, Journal of Fluid Mechanics.

[4]  A. Roshko On the development of turbulent wakes from vortex streets , 1953 .

[5]  George Em Karniadakis,et al.  A low-dimensional model for simulating three-dimensional cylinder flow , 2002, Journal of Fluid Mechanics.

[6]  R. Blevins,et al.  A Model for Vortex Induced Oscillation of Structures , 1974 .

[7]  G. Karniadakis,et al.  A spectral viscosity method for correcting the long-term behavior of POD models , 2004 .

[8]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[9]  Bernd R. Noack,et al.  The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows , 2005, Journal of Fluid Mechanics.

[10]  Imran Akhtar,et al.  Parallel Simulations, Reduced-Order Modeling, and Feedback Control of Vortex Shedding using Fluidic Actuators , 2008 .

[11]  J. Peraire,et al.  OPTIMAL CONTROL OF VORTEX SHEDDING USING LOW-ORDER MODELS. PART II-MODEL-BASED CONTROL , 1999 .

[12]  Wr Graham,et al.  OPTIMAL CONTROL OF VORTEX SHEDDING USING LOW-ORDER MODELS. PART I-OPEN-LOOP MODEL DEVELOPMENT , 1999 .

[13]  C. Williamson Vortex Dynamics in the Cylinder Wake , 1996 .

[14]  Nadine Aubry,et al.  Preserving Symmetries in the Proper Orthogonal Decomposition , 1993, SIAM J. Sci. Comput..

[15]  Anil E. Deane,et al.  Low-dimensional description of the dynamics in separated flow past thick airfoils , 1991 .

[16]  Edriss S. Titi,et al.  Dissipativity of numerical schemes , 1991 .

[17]  Craig L. Streett,et al.  Spectral multi-domain for large-scale fluid dynamic simulations , 1989 .

[18]  I. G. Currie,et al.  Lift-Oscillator Model of Vortex-Induced Vibration , 1970 .

[19]  L. Sirovich Turbulence and the dynamics of coherent structures. I. Coherent structures , 1987 .

[20]  R. Landl,et al.  A mathematical model for vortex-excited vibrations of bluff bodies , 1975 .

[21]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[22]  Ali H. Nayfeh,et al.  Dynamics of MEMS resonators under superharmonic and subharmonic excitations , 2005 .

[23]  J. A. Burns,et al.  Reduced-Order Models for Optimal Control of Vortex-Shedding , 2008 .

[24]  E. Tadmor,et al.  Convergence of spectral methods for nonlinear conservation laws. Final report , 1989 .

[25]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[26]  John L. Lumley,et al.  Viscous Sublayer and Adjacent Wall Region in Turbulent Pipe Flow , 1967 .

[27]  R. D. Prabhu,et al.  The influence of control on proper orthogonal decomposition of wall-bounded turbulent flows , 2001 .

[28]  A. Nayfeh,et al.  Combination Internal Resonances in Heated Annular Plates , 2004 .

[29]  Ali H. Nayfeh,et al.  On the Nonlinear Dynamics of a Buckled Beam Subjected to a Primary-Resonance Excitation , 2004 .

[30]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[31]  S. Balachandar,et al.  Effect of three‐dimensionality on the lift and drag of nominally two‐dimensional cylinders , 1995 .

[32]  Richard Evelyn Donohue Bishop,et al.  The lift and drag forces on a circular cylinder in a flowing fluid , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[33]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[34]  I. Kevrekidis,et al.  Low‐dimensional models for complex geometry flows: Application to grooved channels and circular cylinders , 1991 .

[35]  A. Nayfeh,et al.  Applied nonlinear dynamics : analytical, computational, and experimental methods , 1995 .

[36]  Kelly Cohen,et al.  Sensor Placement for Closed-Loop Flow Control of a "D" Shaped Cylinder Wake , 2004 .

[37]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[38]  Imran Akhtar,et al.  On Controlling the Bluff Body Wake using a Reduced-Order Model , 2008 .

[39]  L Sirovich,et al.  Low-dimensional procedure for the characterization of human faces. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[40]  R. Skop,et al.  On a theory for the vortex-excited oscillations of flexible cylindrical structures , 1975 .

[41]  Paul Kutler,et al.  Implicit Finite-Difference Procedures for the Computation of Vortex Wakes , 1976 .

[42]  Michael A. Henson,et al.  Dynamics analysis of an age distribution model of oscillating yeast cultures , 2002 .

[43]  J. Koseff,et al.  A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates , 1994 .

[44]  Craig L. Streett,et al.  A numerical simulation of the appearance of chaos in finite-length Taylor Couette flow , 1991 .

[45]  S. Balachandar,et al.  Direct Numerical Simulation of Flow Past Elliptic Cylinders , 1996 .

[46]  Ian A. Hiskens,et al.  Switching-induced stable limit cycles , 2007 .