A Riemannian Network for SPD Matrix Learning

Symmetric Positive Definite (SPD) matrix learning methods have become popular in many image and video processing tasks, thanks to their ability to learn appropriate statistical representations while respecting Riemannian geometry of underlying SPD manifolds. In this paper we build a Riemannian network architecture to open up a new direction of SPD matrix non-linear learning in a deep model. In particular, we devise bilinear mapping layers to transform input SPD matrices to more desirable SPD matrices, exploit eigenvalue rectification layers to apply a non-linear activation function to the new SPD matrices, and design an eigenvalue logarithm layer to perform Riemannian computing on the resulting SPD matrices for regular output layers. For training the proposed deep network, we exploit a new backpropagation with a variant of stochastic gradient descent on Stiefel manifolds to update the structured connection weights and the involved SPD matrix data. We show through experiments that the proposed SPD matrix network can be simply trained and outperform existing SPD matrix learning and state-of-the-art methods in three typical visual classification tasks.

[1]  Tamás D. Gedeon,et al.  Emotion Recognition In The Wild Challenge 2014: Baseline, Data and Protocol , 2014, ICMI.

[2]  Joan Bruna,et al.  Spectral Networks and Locally Connected Networks on Graphs , 2013, ICLR.

[3]  Léon Bottou,et al.  Large-Scale Machine Learning with Stochastic Gradient Descent , 2010, COMPSTAT.

[4]  Bruce A. Draper,et al.  Report on the FG 2015 Video Person Recognition Evaluation , 2015, 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG).

[5]  Brian C. Lovell,et al.  Sparse Coding and Dictionary Learning for Symmetric Positive Definite Matrices: A Kernel Approach , 2012, ECCV.

[6]  Brian C. Lovell,et al.  Spatio-temporal covariance descriptors for action and gesture recognition , 2013, 2013 IEEE Workshop on Applications of Computer Vision (WACV).

[7]  Mehrtash Tafazzoli Harandi,et al.  From Manifold to Manifold: Geometry-Aware Dimensionality Reduction for SPD Matrices , 2014, ECCV.

[8]  Tido Röder,et al.  Documentation Mocap Database HDM05 , 2007 .

[9]  Simon Haykin,et al.  GradientBased Learning Applied to Document Recognition , 2001 .

[10]  Andrew Zisserman,et al.  Deep Face Recognition , 2015, BMVC.

[11]  Shengping Zhang,et al.  Online Dictionary Learning on Symmetric Positive Definite Manifolds with Vision Applications , 2015, AAAI.

[12]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[13]  Vittorio Murino,et al.  Log-Hilbert-Schmidt metric between positive definite operators on Hilbert spaces , 2014, NIPS.

[14]  Bruce A. Draper,et al.  The challenge of face recognition from digital point-and-shoot cameras , 2013, 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS).

[15]  Fatih Murat Porikli,et al.  Pedestrian Detection via Classification on Riemannian Manifolds , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Shiguang Shan,et al.  Learning Expressionlets on Spatio-temporal Manifold for Dynamic Facial Expression Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Silvere Bonnabel,et al.  Stochastic Gradient Descent on Riemannian Manifolds , 2011, IEEE Transactions on Automatic Control.

[18]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[19]  Shiguang Shan,et al.  Log-Euclidean Metric Learning on Symmetric Positive Definite Manifold with Application to Image Set Classification , 2015, ICML.

[20]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[21]  Rama Chellappa,et al.  Discriminative Log-Euclidean Feature Learning for Sparse Representation-Based Recognition of Faces from Videos , 2016, IJCAI.

[22]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[23]  Cristian Sminchisescu,et al.  Matrix Backpropagation for Deep Networks with Structured Layers , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[24]  Mehrtash Tafazzoli Harandi,et al.  Approximate infinite-dimensional Region Covariance Descriptors for image classification , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[25]  Hongdong Li,et al.  Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[26]  TuzelOncel,et al.  Pedestrian Detection via Classification on Riemannian Manifolds , 2008 .

[27]  Levent Tunçel,et al.  Optimization algorithms on matrix manifolds , 2009, Math. Comput..

[28]  Cristian Sminchisescu,et al.  Semantic Segmentation with Second-Order Pooling , 2012, ECCV.

[29]  Pierre Vandergheynst,et al.  Learning class‐specific descriptors for deformable shapes using localized spectral convolutional networks , 2015, SGP '15.

[30]  Fatih Murat Porikli,et al.  Region Covariance: A Fast Descriptor for Detection and Classification , 2006, ECCV.

[31]  Vittorio Murino,et al.  Multi-class Classification on Riemannian Manifolds for Video Surveillance , 2010, ECCV.

[32]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[33]  Pierre Vandergheynst,et al.  Geodesic Convolutional Neural Networks on Riemannian Manifolds , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[34]  Junbin Gao,et al.  Matrix Neural Networks , 2016, ISNN.

[36]  S. Sra Positive definite matrices and the S-divergence , 2011, 1110.1773.

[37]  Cristian Sminchisescu,et al.  Training Deep Networks with Structured Layers by Matrix Backpropagation , 2015, ArXiv.

[38]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[39]  Yann Ollivier,et al.  Riemannian metrics for neural networks I: feedforward networks , 2013, 1303.0818.

[40]  Shiguang Shan,et al.  Learning Euclidean-to-Riemannian Metric for Point-to-Set Classification , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[42]  Yann Ollivier,et al.  Practical Riemannian Neural Networks , 2016, ArXiv.

[43]  Larry S. Davis,et al.  Covariance discriminative learning: A natural and efficient approach to image set classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[44]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[45]  Yann LeCun,et al.  What is the best multi-stage architecture for object recognition? , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[46]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[47]  Shiguang Shan,et al.  A Benchmark and Comparative Study of Video-Based Face Recognition on COX Face Database , 2015, IEEE Transactions on Image Processing.