Optimal direct determination of sparse Jacobian matrices

It is well known that a sparse Jacobian matrix can be determined with fewer function evaluations using finite differencing or forward automatic differentiation (AD) passes than the number of independent variables of the underlying function. In this paper, we show that by grouping together rows into blocks and partitioning the resulting column segments, one can reduce this number further. We suggest a graph colouring technique for row partitioned Jacobian matrices to efficiently determine the nonzero entries using direct determination. We characterize optimal direct determination and derive results on the optimality of any direct determination technique based on column computation. Previously published computational results by the authors [S. Hossain and T. Steihaug, Graph colouring in the estimation of sparse derivative matrices: Instances and applications, Discrete Appl. Math. 156(2) (2008), pp. 280–288; S. Hossain, CsegGraph: A graph colouring instance generator, Int. J. Comput. Math. 86(10–11) (2009), pp. 1956–1967] have demonstrated that the row partitioned direct determination can yield considerable savings in function evaluations or AD passes over methods based on the Curtis, Powell, and Reid technique.

[1]  Thomas W. Reps,et al.  Algorithmic Differencing , 2001, Perspectives on Enclosure Methods.

[2]  Thomas F. Coleman,et al.  Large Sparse Numerical Optimization , 1984, Lecture Notes in Computer Science.

[3]  T. Steihaug,et al.  Computing a sparse Jacobian matrix by rows and columns , 1998 .

[4]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.

[5]  Andreas Griewank,et al.  Computing Large Sparse Jacobian Matrices Using Automatic Differentiation , 1994, SIAM J. Sci. Comput..

[6]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[7]  S. Hossain On the computation of sparse Jacobian matrices and Newton steps , 1998 .

[8]  Shahadat Hossain,et al.  The CPR Method and Beyond : Prologue , 2009, Combinatorial Scientific Computing.

[9]  S. Thomas McCormick,et al.  Optimal approximation of sparse hessians and its equivalence to a graph coloring problem , 1983, Math. Program..

[10]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[11]  Shahadat Hossain,et al.  Graph coloring in the estimation of sparse derivative matrices: Instances and applications , 2008, Discret. Appl. Math..

[12]  Shahadat Hossain CsegGraph: a graph colouring instance generator , 2009, Int. J. Comput. Math..

[13]  M. Powell,et al.  On the Estimation of Sparse Hessian Matrices , 1979 .

[14]  J. J. Moré,et al.  Estimation of sparse jacobian matrices and graph coloring problems , 1983 .

[15]  Luca Bergamaschi,et al.  Inexact Quasi-Newton methods for sparse systems of nonlinear equations , 2001, Future Gener. Comput. Syst..

[16]  John D. Ramsdell,et al.  Estimation of Sparse Jacobian Matrices , 1983 .

[17]  T. Steihaug,et al.  Reducing the number of AD passes for computing a sparse Jacobian matrix , 2000 .

[18]  Jorge J. Moré,et al.  Global Continuation for Distance Geometry Problems , 1995, SIAM J. Optim..

[19]  A. Griewank Some Bounds on the Complexity of Gradients, Jacobians, and Hessians , 1993 .

[20]  Yousef Saad,et al.  ILUM: A Multi-Elimination ILU Preconditioner for General Sparse Matrices , 1996, SIAM J. Sci. Comput..

[21]  Thomas F. Coleman,et al.  Estimation of sparse hessian matrices and graph coloring problems , 1982, Math. Program..

[22]  Trond Steihaug,et al.  Graph coloring and the estimation of sparse Jacobian matrices with segmented columns , 1992 .

[23]  Thomas F. Coleman,et al.  The Efficient Computation of Sparse Jacobian Matrices Using Automatic Differentiation , 1998, SIAM J. Sci. Comput..

[24]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[25]  A. Pothen,et al.  Graph Coloring in Optimization Revisited , 2008 .

[26]  Andreas Griewank,et al.  On the unconstrained optimization of partially separable functions , 1982 .

[27]  Shahadat Hossain,et al.  Sparsity issues in the computation of Jacobian matrices , 2002, ISSAC '02.

[28]  Trond Steihaug,et al.  On the successive projections approach to least-squares problems , 1986 .

[29]  Iain S. Duff,et al.  Users' guide for the Harwell-Boeing sparse matrix collection (Release 1) , 1992 .

[30]  T. Coleman,et al.  The cyclic coloring problem and estimation of spare hessian matrices , 1986 .

[31]  Andreas Griewank,et al.  Detecting Jacobian sparsity patterns by Bayesian probing , 2002, Math. Program..

[32]  Daniel Br New Methods to Color the Vertices of a Graph , 1979 .

[33]  Christoph Stangl Optimal Sizing for a Class of Nonlinearly Elastic Materials , 1999, SIAM J. Optim..

[34]  Na Li,et al.  MIQR: A Multilevel Incomplete QR Preconditioner for Large Sparse Least-Squares Problems , 2006, SIAM J. Matrix Anal. Appl..

[35]  Allen Van Gelder,et al.  Another look at graph coloring via propositional satisfiability , 2008, Discret. Appl. Math..