Efficient scalable algorithms for hierarchically semiseparable matrices

Hierarchically semiseparable (HSS) matrix algorithms are emerging techniques in constructing the superfast direct solvers for both dense and sparse linear systems. Here, we develope a set of novel parallel algorithms for the key HSS operations that are used for solving large linear systems. These include the parallel rank-revealing QR factorization, the HSS constructions with hierarchical compression, the ULV HSS factorization, and the HSS solutions. The HSS tree based parallelism is fully exploited at the coarse level. The BLACS and ScaLAPACK libraries are used to facilitate the parallel dense kernel operations at the ne-grained level. We have appplied our new parallel HSS-embedded multifrontal solver to the anisotropic Helmholtz equations for seismic imaging, and were able to solve a linear system with 6.4 billion unknowns using 4096 processors, in about 20 minutes. The classical multifrontal solver simply failed due to high demand of memory. To our knowledge, this is the first successful demonstration of employing the HSS algorithms in solving the truly large-scale real-world problems. Our parallel strategies can be easily adapted to the parallelization of the other rank structured methods.

[1]  W. Hackbusch,et al.  Introduction to Hierarchical Matrices with Applications , 2003 .

[2]  Steffen Börm,et al.  Data-sparse Approximation by Adaptive ℋ2-Matrices , 2002, Computing.

[3]  W. Hackbusch,et al.  An introduction to hierarchical matrices , 2001 .

[4]  Alle-Jan van der Veen,et al.  Some Fast Algorithms for Sequentially Semiseparable Representations , 2005, SIAM J. Matrix Anal. Appl..

[5]  HackbuschW. A sparse matrix arithmetic based on H-matrices. Part I , 1999 .

[6]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[7]  Jianlin Xia,et al.  Superfast Multifrontal Method for Large Structured Linear Systems of Equations , 2009, SIAM J. Matrix Anal. Appl..

[8]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[9]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[10]  Boris N. Khoromskij,et al.  A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems , 2000, Computing.

[11]  Jianlin Xia,et al.  Acoustic inverse scattering via Helmholtz operator factorization and optimization , 2010, J. Comput. Phys..

[12]  Shivkumar Chandrasekaran,et al.  A Superfast Algorithm for Toeplitz Systems of Linear Equations , 2007, SIAM J. Matrix Anal. Appl..

[13]  W. Hackbusch,et al.  On H2-Matrices , 2000 .

[14]  Shivkumar Chandrasekaran,et al.  A Fast ULV Decomposition Solver for Hierarchically Semiseparable Representations , 2006, SIAM J. Matrix Anal. Appl..

[15]  Jianlin Xia,et al.  Seismic Inverse Scattering Via Helmholtz Operator Factorization And Optimization , 2009 .

[16]  Jianlin Xia,et al.  Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..

[17]  V. Rokhlin,et al.  A fast algorithm for the inversion of general Toeplitz matrices , 2004 .

[18]  Jack Dongarra,et al.  ScaLAPACK Users' Guide , 1987 .

[19]  Ming Gu,et al.  Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..

[20]  Israel Gohberg,et al.  Computations with quasiseparable polynomials and matrices , 2008, Theor. Comput. Sci..

[21]  B. Engquist,et al.  Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation , 2010, 1007.4290.

[22]  I. Gohberg,et al.  On a new class of structured matrices , 1999 .

[23]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[24]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[25]  Jianlin Xia A robust inner-outer HSS preconditioner , 2011 .

[26]  Jianlin Xia,et al.  On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver , 2011 .

[27]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[28]  G. Golub,et al.  A bibliography on semiseparable matrices* , 2005 .

[29]  Jianlin Xia,et al.  Robust Approximate Cholesky Factorization of Rank-Structured Symmetric Positive Definite Matrices , 2010, SIAM J. Matrix Anal. Appl..