Efficient scalable algorithms for hierarchically semiseparable matrices
暂无分享,去创建一个
Jianlin Xia | Shen Wang | Yingchong Situ | Maarten V. de Hoop | M. V. Hoop | J. Xia | Shen Wang | Yingchong Situ
[1] W. Hackbusch,et al. Introduction to Hierarchical Matrices with Applications , 2003 .
[2] Steffen Börm,et al. Data-sparse Approximation by Adaptive ℋ2-Matrices , 2002, Computing.
[3] W. Hackbusch,et al. An introduction to hierarchical matrices , 2001 .
[4] Alle-Jan van der Veen,et al. Some Fast Algorithms for Sequentially Semiseparable Representations , 2005, SIAM J. Matrix Anal. Appl..
[5] HackbuschW.. A sparse matrix arithmetic based on H-matrices. Part I , 1999 .
[6] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[7] Jianlin Xia,et al. Superfast Multifrontal Method for Large Structured Linear Systems of Equations , 2009, SIAM J. Matrix Anal. Appl..
[8] W. Hackbusch. A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.
[9] John K. Reid,et al. The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.
[10] Boris N. Khoromskij,et al. A Sparse H-Matrix Arithmetic. Part II: Application to Multi-Dimensional Problems , 2000, Computing.
[11] Jianlin Xia,et al. Acoustic inverse scattering via Helmholtz operator factorization and optimization , 2010, J. Comput. Phys..
[12] Shivkumar Chandrasekaran,et al. A Superfast Algorithm for Toeplitz Systems of Linear Equations , 2007, SIAM J. Matrix Anal. Appl..
[13] W. Hackbusch,et al. On H2-Matrices , 2000 .
[14] Shivkumar Chandrasekaran,et al. A Fast ULV Decomposition Solver for Hierarchically Semiseparable Representations , 2006, SIAM J. Matrix Anal. Appl..
[15] Jianlin Xia,et al. Seismic Inverse Scattering Via Helmholtz Operator Factorization And Optimization , 2009 .
[16] Jianlin Xia,et al. Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..
[17] V. Rokhlin,et al. A fast algorithm for the inversion of general Toeplitz matrices , 2004 .
[18] Jack Dongarra,et al. ScaLAPACK Users' Guide , 1987 .
[19] Ming Gu,et al. Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..
[20] Israel Gohberg,et al. Computations with quasiseparable polynomials and matrices , 2008, Theor. Comput. Sci..
[21] B. Engquist,et al. Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation , 2010, 1007.4290.
[22] I. Gohberg,et al. On a new class of structured matrices , 1999 .
[23] A. George. Nested Dissection of a Regular Finite Element Mesh , 1973 .
[24] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[25] Jianlin Xia. A robust inner-outer HSS preconditioner , 2011 .
[26] Jianlin Xia,et al. On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver , 2011 .
[27] Wolfgang Hackbusch,et al. A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.
[28] G. Golub,et al. A bibliography on semiseparable matrices* , 2005 .
[29] Jianlin Xia,et al. Robust Approximate Cholesky Factorization of Rank-Structured Symmetric Positive Definite Matrices , 2010, SIAM J. Matrix Anal. Appl..