Multiphase Joint Segmentation-Registration and Object Tracking for Layered Images

In this paper we propose to jointly segment and register objects of interest in layered images. Layered imaging refers to imageries taken from different perspectives and possibly by different sensors. Registration and segmentation are therefore the two main tasks which contribute to the bottom level, data alignment, of the multisensor data fusion hierarchical structures. Most exploitations of two layered images assumed that scanners are at very high altitudes and that only one transformation ties the two images. Our data are however taken at mid-range and therefore requires segmentation to assist us examining different object regions in a divide-and-conquer fashion. Our approach is a combination of multiphase active contour method with a joint segmentation-registration technique (which we called MPJSR) carried out in a local moving window prior to a global optimization. To further address layered video sequences and tracking objects in frames, we propose a simple adaptation of optical flow calculations along the active contours in a pair of layered image sequences. The experimental results show that the whole integrated algorithm is able to delineate the objects of interest, align them for a pair of layered frames and keep track of the objects over time.

[1]  Daniel Cremers,et al.  Motion Competition: A Variational Approach to Piecewise Parametric Motion Segmentation , 2005, International Journal of Computer Vision.

[2]  Rachid Deriche,et al.  Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  V. Caselles,et al.  Snakes in Movement , 1996 .

[4]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[5]  Gary J. Balas,et al.  Optical flow: a curve evolution approach , 1995, Proceedings., International Conference on Image Processing.

[6]  Anthony J. Yezzi,et al.  A Fully Global Approach to Image Segmentation via Coupled Curve Evolution Equations , 2002, J. Vis. Commun. Image Represent..

[7]  Michael J. Black,et al.  A framework for the robust estimation of optical flow , 1993, 1993 (4th) International Conference on Computer Vision.

[8]  Olivier D. Faugeras,et al.  The geometry of multiple images - the laws that govern the formation of multiple images of a scene and some of their applications , 2001 .

[9]  Josiane Zerubia,et al.  A Level Set Model for Image Classification , 1999, International Journal of Computer Vision.

[10]  Xuecheng Tai,et al.  Piecewise Constant Level Set Methods for Multiphase Motion , 2005 .

[11]  Pascal Vasseur,et al.  Introduction to Multisensor Data Fusion , 2005, The Industrial Information Technology Handbook.

[12]  Anthony J. Yezzi,et al.  Information-Theoretic Active Polygons for Unsupervised Texture Segmentation , 2005, International Journal of Computer Vision.

[13]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[14]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[15]  Rama Chellappa,et al.  A computational vision approach to image registration , 1993, IEEE Trans. Image Process..

[16]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[17]  A. Murat Tekalp,et al.  Occlusion adaptive motion snake , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[18]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[19]  Yun He,et al.  A generalized divergence measure for robust image registration , 2003, IEEE Trans. Signal Process..

[20]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .

[21]  Abdol-Reza Mansouri,et al.  Region Tracking via Level Set PDEs without Motion Computation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Supun Samarasekera,et al.  Aerial video surveillance and exploitation , 2001, Proc. IEEE.

[23]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Rachid Deriche,et al.  Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation , 2002, International Journal of Computer Vision.

[25]  Supun Samarasekera,et al.  Registration of highly-oblique and zoomed in aerial video to reference imagery , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[26]  Rémi Ronfard,et al.  Region-based strategies for active contour models , 1994, International Journal of Computer Vision.

[27]  Leila Maria Garcia Fonseca,et al.  Automatic registration and mosaicking system for remotely sensed imagery , 2003, SPIE Remote Sensing.

[28]  P. Olver,et al.  Conformal curvature flows: From phase transitions to active vision , 1996, ICCV 1995.

[29]  Rachid Deriche,et al.  Geodesic Active Regions for Motion Estimation and Tracking , 1999, ICCV.

[30]  Anthony J. Yezzi,et al.  Fast incorporation of optical flow into active polygons , 2005, IEEE Transactions on Image Processing.

[31]  D. L. Hall,et al.  Mathematical Techniques in Multisensor Data Fusion , 1992 .

[32]  Tony F. Chan,et al.  TRACKING OBJECTS WITH THE CHAN-VESE ALGORITHM , 2003 .

[33]  O. Faugeras,et al.  The Geometry of Multiple Images , 1999 .

[34]  Ümit Özgüner,et al.  Information-Theoretic Data Registration for UAV-Based Sensing , 2008, IEEE Transactions on Intelligent Transportation Systems.

[35]  Rama Chellappa,et al.  Multisensor image registration by feature consensus , 1999, Pattern Recognit..

[36]  Ming Tang,et al.  General Scheme of Region Competition Based on Scale Space , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Vicent Caselles,et al.  Geometric models for active contours , 1995, Proceedings., International Conference on Image Processing.

[38]  P. Anandan,et al.  Mosaic based representations of video sequences and their applications , 1995, Proceedings of IEEE International Conference on Computer Vision.

[39]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[40]  Anthony J. Yezzi,et al.  A variational framework for integrating segmentation and registration through active contours , 2003, Medical Image Anal..

[41]  H. Krim,et al.  Hierarchical stochastic modeling of SAR imagery for segmentation/compression , 1999, IEEE Trans. Signal Process..

[42]  Harpreet S. Sawhney,et al.  Registration of video to geo-referenced imagery , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[43]  Laurent D. Cohen,et al.  Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Laurent D. Cohen,et al.  On active contour models and balloons , 1991, CVGIP Image Underst..

[45]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[46]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[47]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[48]  Jean-Marc Odobez,et al.  Robust Multiresolution Estimation of Parametric Motion Models , 1995, J. Vis. Commun. Image Represent..

[49]  Patrick Bouthemy,et al.  Region-Based Tracking Using Affine Motion Models in Long Image Sequences , 1994 .

[50]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[51]  Jenq-Neng Hwang,et al.  Fast and automatic video object segmentation and tracking for content-based applications , 2002, IEEE Trans. Circuits Syst. Video Technol..

[52]  Lawrence A. Klein,et al.  Sensor and Data Fusion Concepts and Applications , 1993 .

[53]  H. Opower Multiple view geometry in computer vision , 2002 .