Stopping muon effect and estimation of intracloud electric field

[1]  A. Chilingarian,et al.  Structure of thunderstorm ground enhancements , 2020 .

[2]  G. Diendorfer,et al.  Significant enhancements of secondary cosmic rays and electric field at the high mountain peak of Lomnický Štít in High Tatras during thunderstorms , 2020, Earth, Planets and Space.

[3]  A. Chilingarian,et al.  Termination of thunderstorm-related bursts of energetic radiation and particles by inverted intracloud and hybrid lightning discharges , 2020 .

[4]  A. Chilingarian,et al.  Comment on "Measurement of the Electrical Properties of a Thundercloud through Muon Imaging by the GRAPES-3 Experiment". , 2020, Physical review letters.

[5]  A. Chilingarian,et al.  Origin of enhanced gamma radiation in thunderclouds , 2019 .

[6]  R. Parsons,et al.  Systematic differences due to high energy hadronic interaction models in air shower simulations in the 100 GeV-100 TeV range , 2019, Physical Review D.

[7]  S. D. Morris,et al.  Measurement of the Electrical Properties of a Thundercloud Through Muon Imaging by the GRAPES-3 Experiment. , 2019, Physical review letters.

[8]  A. Chilingarian,et al.  Structures of the intracloud electric field supporting origin of long-lasting thunderstorm ground enhancements , 2018, Physical Review D.

[9]  A. Chilingarian,et al.  The SEVAN Worldwide network of particle detectors: 10 years of operation , 2018 .

[10]  A. Chilingarian,et al.  In situ measurements of the Runaway Breakdown (RB) on Aragats mountain , 2017 .

[11]  J. Dwyer,et al.  A simulation study on the electric field spectral dependence of thunderstorm ground enhancements and gamma ray glows , 2017 .

[12]  A. Chilingarian,et al.  On the initiation of lightning in thunderclouds , 2017, Scientific Reports.

[13]  Tatsuhiko Sato,et al.  Analytical Model for Estimating the Zenith Angle Dependence of Terrestrial Cosmic Ray Fluxes , 2016, PloS one.

[14]  A. Chilingarian,et al.  Calibration of particle detectors for secondary cosmic rays using gamma-ray beams from thunderclouds , 2015 .

[15]  A. Chilingarian,et al.  Lightning origination and thunderstorm ground enhancements terminated by the lightning flash , 2015 .

[16]  G. Karapetyan Variations of muon flux in the atmosphere during thunderstorms , 2014 .

[17]  A. Chilingarian,et al.  On the possibility of location of radiation-emitting region in thundercloud , 2013 .

[18]  A. Chilingarian,et al.  Remarks on recent results on neutron production during thunderstorms , 2012 .

[19]  A. Chilingarian,et al.  Particle bursts from thunderclouds: Natural particle accelerators above our heads , 2011 .

[20]  A. Chilingarian,et al.  Ground-based observations of thunderstorm-correlated fluxes of high-energy electrons, gamma rays, and neutrons , 2010 .

[21]  G. Hesketh Measurement of the charge ratio of atmospheric muons with the CMS detector , 2010, 1009.1036.

[22]  M. Takita,et al.  Observation of an energetic radiation burst from mountain-top thunderclouds. , 2009, Physical review letters.

[23]  N. S. Khaerdinov,et al.  Parameters of particle fluxes generated by GCR in thunderstorm electric fields , 2009 .

[24]  N. S. Khaerdinov,et al.  Strong variations of cosmic ray muons during thunderstorms , 2009 .

[25]  Suren Chilingaryan,et al.  The Aragats data acquisition system for highly distributed particle detecting networks , 2008 .

[26]  S. Incerti,et al.  Geant4 developments and applications , 2006, IEEE Transactions on Nuclear Science.

[27]  V. Petkov,et al.  Cosmic rays and the electric field of thunderclouds: Evidence for acceleration of particles (runaway electrons) , 2005 .

[28]  V. A. Ivanov,et al.  Correlated measurements of secondary cosmic ray fluxes by the Aragats Space-Environmental Center monitors , 2005 .

[29]  Thomas C. Marshall,et al.  Observed electric fields associated with lightning initiation , 2004 .

[30]  W. I. Axford,et al.  Effects of atmospheric electric fields on cosmic rays , 2004 .

[31]  T. Torii,et al.  Observation of gamma‐ray dose increase associated with winter thunderstorm and lightning activity , 2002 .

[32]  A. S. Lidvansky,et al.  Transient variations of secondary cosmic rays due to atmospheric electric field and evidence for pre-lightning particle acceleration , 2002 .

[33]  T. Hebbeker,et al.  A compilation of high energy atmospheric muon data at sea level , 2001, hep-ph/0102042.

[34]  S. Bass,et al.  Microscopic models for ultrarelativistic heavy ion collisions , 1998, nucl-th/9803035.

[35]  N. Kalmykov,et al.  Quark-Gluon String Model and EAS Simulation Problems at Ultra-High Energies , 1997 .

[36]  W. D. Rust,et al.  Electric field magnitudes and lightning initiation in thunderstorms , 1995 .

[37]  G. M. Milikh,et al.  Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm , 1992 .

[38]  E. Williams,et al.  Mixed-Phase Microphysics and Cloud Electrification. , 1991 .

[39]  Earle R. Williams,et al.  The tripole structure of thunderstorms , 1989 .

[40]  M. G. Thompson,et al.  Precise Measurement of the Sea Level Muon Charge Ratio , 1975 .

[41]  G. Shaw BACKGROUND COSMIC COUNT INCREASE ASSOCIATED WITH THUNDERSTORMS. , 1967 .

[42]  G. S. Saakyan,et al.  ENERGY SPECTRA AND NUCLEAR INTERACTIONS OF COSMIC RAY PARTICLES , 1958 .

[43]  J. Kuettner THE ELECTRICAL AND METEOROLOGICAL CONDITIONS INSIDE THUNDERCLOUDS , 1950 .

[44]  J. Cairns Penetrating Radiation from Thunderclouds , 1933, Nature.

[45]  C. T. R. Wilson,et al.  The Acceleration of β-particles in Strong Electric Fields such as those of Thunderclouds , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[46]  A. S. Lidvansky,et al.  A Strong Enhancement of Cosmic Ray Intensity during Thunderstorm: A Case Study and Implications , 2005 .

[47]  A. Lagutin,et al.  Temperature Effect of Neutron Component , 1989 .