NUMERICAL ANALYSIS OF AXISYMMETRIC FLOWS AND METHODS FOR FLUID-STRUCTURE INTERACTION ARISING IN BLOOD FLOW SIMULATION

In this thesis we propose and analyze the numerical methods for the approximation of axisymmetric flows as well as algorithms suitable for the solution of fluid-structure interaction problems. Our investigation is aimed at, but are not restricted to, the simulation of the blood flow dynamics. The first part of this work deals with an axisymmetric fluid model based on three-dimensional incompressible Stokes or Navier–Stokes equations which are solved on a two-dimensional half-section of the domain under consideration. In particular we show optimal a priori error estimates for P1isoP2/P1 axisymmetric finite elements for the steady Stokes equations under the assumption that the domain and the data are axisymmetric and that the data have no angular component. Our analysis is carried out in the framework of weighted Sobolev spaces and takes advantage of a suitably defined Cl´ement type projection operator. We then introduce an axisymmetric formulation of the Navier–Stokes equations in moving domains and, starting from existing results in three-dimensions, we set up an Arbitrary Lagrangian–Eulerian (ALE) formulation and prove some stability results. In the second part, we deal with algorithms for the solution of fluid-structure interaction problems. We introduce the problem in a generic form where the fluid is described by means of incompressible Navier–Stokes equations and the structure by a viscoelastic model. We account for large deformations of the structure and we show how existing algorithms may be improved to reduce the computational time. In particular we show how to use transpiration boundary conditions to approximate the fluid-structure problem in a fixed point strategy. Moreover, in a quasi-Newton strategy we reduce the cost by replacing the Jacobian with inexact Jacobians stemming from reduced physical models for the problem at hand. To speed up the convergence of the Newton algorithm, we also define a dynamic preconditioner and an acceleration scheme which have been successfully tested in haemodynamics simulations in two and three dimensions.

[1]  B. Mercier,et al.  Résolution d’un problème aux limites dans un ouvert axisymétrique par éléments finis en $r, z$ et séries de Fourier en $\theta $ , 1982 .

[2]  Miguel A. Fernández,et al.  Deriving Adequate Formulations for Fluid-Structure Interaction Problems: from ALE to Transpiration , 2000 .

[3]  R Pietrabissa,et al.  Multiscale modelling as a tool to prescribe realistic boundary conditions for the study of surgical procedures. , 2002, Biorheology.

[4]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[5]  P. Hansbo Aspects of conservation in finite element flow computations , 1994 .

[6]  H. B. Veiga On the Existence of Strong Solutions to a Coupled Fluid-Structure Evolution Problem , 2004 .

[7]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[8]  Miguel Cervera,et al.  On the computational efficiency and implementation of block-iterative algorithms for nonlinear coupled Problems , 1996 .

[9]  Yuan-Cheng Fung,et al.  An introduction to the theory of aeroelasticity , 1955 .

[10]  Hermann G. Matthies,et al.  Numerical Efficiency of Different Partitioned Methods for Fluid‐Structure Interaction , 2000 .

[11]  Monique Dauge,et al.  Spectral Methods for Axisymmetric Domains , 1999 .

[12]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[13]  Bruce M. Irons,et al.  A version of the Aitken accelerator for computer iteration , 1969 .

[14]  G. C. Lee.,et al.  Numerical simulation for the propagation of nonlinear pulsatile waves in arteries. , 1992, Journal of biomechanical engineering.

[15]  Anne M. Robertson,et al.  A DIRECTOR THEORY APPROACH FOR MODELING BLOOD FLOW IN THE ARTERIAL SYSTEM: AN ALTERNATIVE TO CLASSICAL 1D MODELS , 2005 .

[16]  Gorazd Medic Etude mathématique des modèles aux tensions de Reynolds et simulation numérique d'écoulements turbulents sur parois fixes et mobiles , 1999 .

[17]  Miguel A. Fernández,et al.  ACCELERATION OF A FIXED POINT ALGORITHM FOR FLUID-STRUCTURE INTERACTION USING TRANSPIRATION CONDITIONS , 2003 .

[18]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Partial Differential Equations , 1999 .

[19]  Long-an Ying Infinite element approximation to axial symmetric Stokes flow , 1986 .

[20]  T. Dupont,et al.  Polynomial approximation of functions in Sobolev spaces , 1980 .

[21]  H. Keller,et al.  Analysis of Numerical Methods , 1969 .

[22]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[23]  P. Tallec,et al.  Fluid structure interaction with large structural displacements , 2001 .

[24]  Claude Martini,et al.  Superhedging Strategies and Balayage in Discrete Time , 2004 .

[25]  Cornelis W. Oosterlee,et al.  KRYLOV SUBSPACE ACCELERATION FOR NONLINEAR MULTIGRID SCHEMES , 1997 .

[26]  Jocelyne Erhel,et al.  NEWTON–GMRES ALGORITHM APPLIED TO COMPRESSIBLE FLOWS , 1996 .

[27]  J. Traub Iterative Methods for the Solution of Equations , 1982 .

[28]  F. Migliavacca,et al.  Modeling of the Norwood circulation: effects of shunt size, vascular resistances, and heart rate. , 2001, American journal of physiology. Heart and circulatory physiology.

[29]  W. Nichols,et al.  McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles , 1998 .

[30]  Rüdiger Verfürth,et al.  Error estimates for a mixed finite element approximation of the Stokes equations , 1984 .

[31]  Charbel Farhat,et al.  Partitioned procedures for the transient solution of coupled aeroelastic problems , 2001 .

[32]  O. Zienkiewicz,et al.  The finite element method in structural and continuum mechanics, numerical solution of problems in structural and continuum mechanics , 1967 .

[33]  Wolfgang Mackens,et al.  Coupling iterative subsystem solvers , 1999 .

[34]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[35]  Alfio Quarteroni,et al.  Computational vascular fluid dynamics: problems, models and methods , 2000 .

[36]  M. Lighthill On displacement thickness , 1958, Journal of Fluid Mechanics.

[37]  Pascal Frey,et al.  Fluid-structure interaction in blood flows on geometries based on medical imaging , 2005 .

[38]  Alfio Quarteroni,et al.  Mathematical Modelling and Numerical Simulation of the Cardiovascular System , 2004 .

[39]  Tony F. Chan,et al.  Analysis of Projection Methods for Solving Linear Systems with Multiple Right-Hand Sides , 1997, SIAM J. Sci. Comput..

[40]  O. Pironneau,et al.  Error estimates for finite element method solution of the Stokes problem in the primitive variables , 1979 .

[41]  Efstratios Gallopoulos,et al.  An Iterative Method for Nonsymmetric Systems with Multiple Right-Hand Sides , 1995, SIAM J. Sci. Comput..

[42]  V. Girault,et al.  A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .

[43]  M. Heil An efficient solver for the fully-coupled solution of large-displacement fluid-structure interaction problems , 2004 .

[44]  Christian Rey,et al.  A Rayleigh–Ritz preconditioner for the iterative solution to large scale nonlinear problems , 1998, Numerical Algorithms.

[45]  J.-F. Gerbeau,et al.  A quasi-Newton method for a fluid-structure problem arising in blood flows , 2003 .

[46]  R. Mittra,et al.  A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields , 1989 .

[47]  Fabio Nobile,et al.  Numerical approximation of fluid-structure interaction problems with application to haemodynamics , 2001 .

[48]  Alfio Quarteroni,et al.  Numerical Treatment of Defective Boundary Conditions for the Navier-Stokes Equations , 2002, SIAM J. Numer. Anal..

[49]  Y. Saad,et al.  On the Lánczos method for solving symmetric linear systems with several right-hand sides , 1987 .

[50]  A. Quarteroni,et al.  On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels , 2001 .

[51]  A NOTE ON A VECTOR TRANSPORT EQUATION WITH APPLICATIONS TO NON-NEWTONIAN FLUIDS , 1998 .

[52]  Alfio Quarteroni,et al.  Analysis of the Yosida Method for the Incompressible Navier-Stokes Equations , 1999 .

[53]  S. Sherwin,et al.  One-dimensional modelling of a vascular network in space-time variables , 2003 .

[54]  P. Tallec,et al.  Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity , 1998 .

[55]  Yousef Saad,et al.  Convergence Theory of Nonlinear Newton-Krylov Algorithms , 1994, SIAM J. Optim..

[56]  P. Tallec Numerical methods for nonlinear three-dimensional elasticity , 1994 .

[57]  Ekkehard Ramm,et al.  Accelerated iterative substructuring schemes for instationary fluid-structure interaction , 2001 .

[58]  J. Oden Finite Elements of Nonlinear Continua , 1971 .

[59]  Michael B. Bieterman,et al.  Practical Design and Optimization in Computational Fluid Dynamics , 1993 .

[60]  Jean-Frédéric Gerbeau,et al.  A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows , 2003 .

[61]  Benoît Desjardins,et al.  Existence of Weak Solutions for the Motion of Rigid Bodies in a Viscous Fluid , 1999 .

[62]  Michael K. Ng,et al.  Galerkin Projection Methods for Solving Multiple Linear Systems , 1999, SIAM J. Sci. Comput..

[63]  M. Tabata Finite element analysis of axisymmetric flow problems , 1996 .

[64]  C. Farhat,et al.  Two efficient staggered algorithms for the serial and parallel solution of three-dimensional nonlinear transient aeroelastic problems , 2000 .

[65]  M. Lupo,et al.  Unsteady Stokes Flow in a Distensible Pipe , 1991 .

[66]  B. Parlett A new look at the Lanczos algorithm for solving symmetric systems of linear equations , 1980 .

[67]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[68]  C. Grandmont,et al.  Existence for an Unsteady Fluid-Structure Interaction Problem , 2000 .

[69]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[70]  Fabio Nobile,et al.  Fluid Structure Interaction in Blood Flow Problems , 1999 .

[71]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[72]  Tayfun E. Tezduyar,et al.  Finite Element Methods for Fluid Dynamics with Moving Boundaries and Interfaces , 2004 .

[73]  Céline Grandmont,et al.  Weak solutions for a fluid-elastic structure interaction model , 2001 .

[74]  Charbel Farhat,et al.  The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids , 2001 .

[75]  A. Quarteroni Mathematical Modelling of the Cardiovascular System , 2003, math/0305015.

[76]  Gerard L. G. Sleijpen,et al.  Accelerated Inexact Newton Schemes for Large Systems of Nonlinear Equations , 1998, SIAM J. Sci. Comput..

[77]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[78]  L. Quartapelle,et al.  Numerical solution of the incompressible Navier-Stokes equations , 1993, International series of numerical mathematics.

[79]  Tony F. Chan An Approximate Newton Method for Coupled Nonlinear Systems , 1985 .

[80]  Yvon Maday,et al.  Fluid-Structure Interaction: A Theoretical Point of View , 2000 .

[81]  A. Kufner Weighted Sobolev Spaces , 1985 .

[83]  D. Chapelle,et al.  The Finite Element Analysis of Shells - Fundamentals , 2003 .

[84]  Alfio Quarteroni,et al.  A domain decomposition framework for fluid-structure interaction problems , 2006 .