A 2D unstructured multi-material Cell-Centered Arbitrary Lagrangian―Eulerian (CCALE) scheme using MOF interface reconstruction

Abstract We present an original Cell-Centered Arbitrary Lagrangian–Eulerian (CCALE) strategy using the Moment Of Fluid (MOF) interface reconstruction devoted to the numerical simulation of two-dimensional multi-material compressible fluid flows on general unstructured grids. Our methodology is assessed through several demanding two-dimensional tests and comparison with Volume Of Fluid (VOF) interface reconstruction. The corresponding numerical results provide a clear evidence of the robustness and the accuracy of this new scheme.

[1]  Jérôme Breil,et al.  Hybrid remap for multi-material ALE , 2011 .

[2]  Rémi Abgrall,et al.  A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..

[3]  Hyung Taek Ahn,et al.  Multi-material interface reconstruction on generalized polyhedral meshes , 2007, J. Comput. Phys..

[4]  Pierre-Henri Maire,et al.  A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..

[5]  Raphaël Loubère,et al.  ReALE: A reconnection-based arbitrary-Lagrangian-Eulerian method , 2010, J. Comput. Phys..

[6]  Jérôme Breil,et al.  A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction , 2010, J. Comput. Phys..

[7]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[8]  Jérôme Breil,et al.  A cell‐centred arbitrary Lagrangian–Eulerian (ALE) method , 2008 .

[9]  Jérôme Breil,et al.  A two‐dimensional VOF interface reconstruction in a multi‐material cell‐centered ALE scheme , 2011 .

[10]  Mikhail J. Shashkov,et al.  Reconstruction of multi-material interfaces from moment data , 2008, J. Comput. Phys..

[11]  Rao V. Garimella,et al.  A comparative study of interface reconstruction methods for multi-material ALE simulations , 2010 .

[12]  Len G. Margolin,et al.  Second-order sign-preserving conservative interpolation (remapping) on general grids , 2003 .

[13]  J. Glimm,et al.  A critical analysis of Rayleigh-Taylor growth rates , 2001 .

[14]  V. Springel E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh , 2009, 0901.4107.

[15]  Pierre-Henri Maire,et al.  Two-Step Hybrid Remapping (Conservative Interpolation) for Multimaterial Arbitrary Lagrangian-Eulerian Methods LA-UR-10-05438 , 2010 .

[16]  P. Knupp Achieving finite element mesh quality via optimization of the jacobian matrix norm and associated qu , 2000 .

[17]  M. Shashkov,et al.  A pressure relaxation closure model for one-dimensional, two-material Lagrangian hydrodynamics based on the Riemann problem , 2010 .