Question Classification using Maximum Entropy Models

Question Answering (QA) systems are the next generation of search technology. A QA system exploits more information about a user’s intention, returning the exact answer to a users query. A crucial component of a QA system is Question Classification (QC), which involves determining the type of information the question is requesting. QC narrows the scope of processing within a QA. For example, “Who is the fastest swimmer?” the expected answer type (or classification) could be HUM:ind, which denotes a human individual. This project develops a new approach to QC, which involves the application of statistical methods, namely Maximum Entropy models for classification. This approach outperforms state-of-the-art accuracy.

[1]  Ulf Hermjakob,et al.  Parsing and Question Classification for Question Answering , 2001, ACL 2001.

[2]  Lynette Hirschman,et al.  Natural language question answering: the view from here , 2001, Natural Language Engineering.

[3]  Ellen M. Voorhees,et al.  Overview of TREC 2001 , 2001, TREC.

[4]  Ellen M. Voorhees,et al.  The Twelfth Text Retrieval Conference, TREC 2003 , 2004 .

[5]  James R. Curran,et al.  Language Independent NER using a Maximum Entropy Tagger , 2003, CoNLL.

[6]  Sanda M. Harabagiu,et al.  Experiments with Open-Domain Textual Question Answering , 2000, COLING.

[7]  Michael Collins,et al.  AT&T at TREC-8 , 1999, TREC.

[8]  Wei Li,et al.  A Question Answering System Supported by Information Extraction , 2000, ANLP.

[9]  Ellen M. Voorhees,et al.  The eleventh text REtrieval conference, TREC 2002 , 2003 .

[10]  Jennifer Chu-Carroll,et al.  Statistical answer-type identification in open-domain question answering , 2002 .

[11]  Ronald Rosenfeld,et al.  Adaptive Statistical Language Modeling; A Maximum Entropy Approach , 1994 .

[12]  Adwait Ratnaparkhi,et al.  A Simple Introduction to Maximum Entropy Models for Natural Language Processing , 1997 .

[13]  James R. Curran,et al.  Parsing the WSJ Using CCG and Log-Linear Models , 2004, ACL.

[14]  M. F. Porter,et al.  An algorithm for suffix stripping , 1997 .

[15]  Ellen M. Voorhees,et al.  The Ninth Text REtrieval Conference (TREC-9) , 2001 .

[16]  Patrick Pantel,et al.  Discovery of inference rules for question-answering , 2001, Natural Language Engineering.

[17]  J. Darroch,et al.  Generalized Iterative Scaling for Log-Linear Models , 1972 .

[18]  John A. Carroll,et al.  Applied morphological processing of English , 2001, Natural Language Engineering.

[19]  Ellen M. Voorhees,et al.  Overview of TREC 2003. , 2003 .

[20]  Irina Rish,et al.  An empirical study of the naive Bayes classifier , 2001 .

[21]  Wei Li,et al.  QuASM: a system for question answering using semi-structured data , 2002, JCDL '02.

[22]  Jun Suzuki,et al.  Question Classification using HDAG Kernel , 2003, ACL 2003.

[23]  L BergerAdam,et al.  A maximum entropy approach to natural language processing , 1996 .

[24]  Andrew G. Clark,et al.  Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL) , 2002 .

[25]  John A. Carroll,et al.  Robust, applied morphological generation , 2000, INLG.

[26]  Wayne H. Ward,et al.  Question Classification with Support Vector Machines and Error Correcting Codes , 2003, HLT-NAACL.

[27]  Adwait Ratnaparkhi,et al.  A Maximum Entropy Model for Part-Of-Speech Tagging , 1996, EMNLP.

[28]  Jun Wu,et al.  Maximum entropy techniques for exploiting syntactic, semantic and collocational dependencies in language modeling , 2000, Comput. Speech Lang..

[29]  Lynette Hirschman,et al.  Deep Read: A Reading Comprehension System , 1999, ACL.

[30]  John D. Lafferty,et al.  Statistical Models for Text Segmentation , 1999, Machine Learning.

[31]  Sanda M. Harabagiu,et al.  FALCON: Boosting Knowledge for Answer Engines , 2000, TREC.

[32]  Jimmy J. Lin,et al.  Data-Intensive Question Answering , 2001, TREC.

[33]  Eduard H. Hovy,et al.  Learning surface text patterns for a Question Answering System , 2002, ACL.

[34]  Eduard H. Hovy,et al.  Question Answering in Webclopedia , 2000, TREC.

[35]  James R. Curran,et al.  Investigating GIS and Smoothing for Maximum Entropy Taggers , 2003, EACL.

[36]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[37]  Andrew McCallum,et al.  Using Maximum Entropy for Text Classification , 1999 .

[38]  Jonathan Brown jonbrown Entity-Tagged Language Models for Question Classification in a QA System , 2004 .

[39]  Eduard Hovy,et al.  A question/answer typology with surface text patterns , 2002 .

[40]  Ellen M. Voorhees,et al.  Overview of TREC 2003 , 2003, TREC.

[41]  Ellen M. Voorhees,et al.  The TREC-8 Question Answering Track Evaluation , 2000, TREC.

[42]  Zellig S. Harris,et al.  Distributional Structure , 1954 .

[43]  Ellen M. Voorhees,et al.  Building a question answering test collection , 2000, SIGIR '00.

[44]  S. Pulman Word Meaning and Belief , 1983 .

[45]  Adwait Ratnaparkhi,et al.  A Maximum Entropy Model for Prepositional Phrase Attachment , 1994, HLT.

[46]  Adam L. Berger,et al.  A Maximum Entropy Approach to Natural Language Processing , 1996, CL.

[47]  Mark Steedman,et al.  Building Deep Dependency Structures using a Wide-Coverage CCG Parser , 2002, ACL.

[48]  Adam Kilgarriff,et al.  of the European Chapter of the Association for Computational Linguistics , 2006 .

[49]  Martin F. Porter,et al.  An algorithm for suffix stripping , 1997, Program.

[50]  Dan Roth,et al.  Learning Question Classifiers , 2002, COLING.

[51]  Sanda M. Harabagiu,et al.  The Structure and Performance of an Open-Domain Question Answering System , 2000, ACL.

[52]  Raymond J. Mooney,et al.  Learning Parse and Translation Decisions from Examples with Rich Context , 1997, ACL.