Analysis of acceleration strategies for restarted minimal residual methods

We provide an overview of existing strategies which compensate for the deterioration of convergence of minimum residual (MR) Krylov subspace methods due to restarting. We evaluate the popular practice of using nearly invariant subspaces to either augment Krylov subspaces or to construct preconditioners which invert on these subspaces. In the case where these spaces are exactly invariant, the augmentation approach is shown to be superior. We further show how a strategy recently introduced by de Sturler for truncating the approximation space of an MR method can be interpreted as a controlled loosening of the condition for global MR approximation based on the canonical angles between subspaces. For the special case of Krylov subspace methods, we give a concise derivation of the role of Ritz and harmonic Ritz values and vectors in the polynomial description of Krylov spaces as well as of the use of the implicitly updated Arnoldi method for manipulating Krylov spaces.

[1]  Tobin A. Driscoll,et al.  From Potential Theory to Matrix Iterations in Six Steps , 1998, SIAM Rev..

[2]  R. Freund Quasi-Kernel Polynomials and Convergence Results for Quasi-Minimal Residual Iterations , 1992 .

[3]  Homer F. Walker,et al.  A simpler GMRES , 1994, Numer. Linear Algebra Appl..

[4]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[5]  S. A. Kharchenko,et al.  Eigenvalue translation based preconditioners for the GMRES(k) method , 1995, Numer. Linear Algebra Appl..

[6]  G. W. Stewart,et al.  Matrix algorithms , 1998 .

[7]  Ronald B. Morgan,et al.  Implicitly Restarted GMRES and Arnoldi Methods for Nonsymmetric Systems of Equations , 2000, SIAM J. Matrix Anal. Appl..

[8]  Cornelis Vuik,et al.  GMRESR: a family of nested GMRES methods , 1994, Numer. Linear Algebra Appl..

[9]  Henk A. van der Vorst,et al.  Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..

[10]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[11]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[12]  Yousef Saad,et al.  Deflated and Augmented Krylov Subspace Techniques , 1997, Numer. Linear Algebra Appl..

[13]  R. Morgan Computing Interior Eigenvalues of Large Matrices , 1991 .

[14]  K. Burrage,et al.  Restarted GMRES preconditioned by deflation , 1996 .

[15]  Thomas A. Manteuffel,et al.  Minimal Residual Method Stronger than Polynomial Preconditioning , 1996, SIAM J. Matrix Anal. Appl..

[16]  E. Sturler,et al.  Truncation Strategies for Optimal Krylov Subspace Methods , 1999 .

[17]  Thomas A. Manteuffel,et al.  On the roots of the orthogonal polynomials and residual polynomials associated with a conjugate gradient method , 1994, Numer. Linear Algebra Appl..

[18]  Wayne Joubert,et al.  On the convergence behavior of the restarted GMRES algorithm for solving nonsymmetric linear systems , 1994, Numer. Linear Algebra Appl..

[19]  Y. Saad,et al.  Deflated and Augmented Krylov Subspace Techniques , 1997 .

[20]  Gene H. Golub,et al.  Adaptively Preconditioned GMRES Algorithms , 1998, SIAM J. Sci. Comput..

[21]  Y. Saad Analysis of Augmented Krylov Subspace Methods , 1997, SIAM J. Matrix Anal. Appl..

[22]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[23]  M. Eiermann,et al.  Geometric aspects of the theory of Krylov subspace methods , 2001, Acta Numerica.

[24]  R. Freund Quasi-kernel polynomials and their use in non-Hermitian matrix iterations , 1992 .

[25]  E. Sturler,et al.  Nested Krylov methods based on GCR , 1996 .

[26]  T. Manteuffel,et al.  Necessary and Sufficient Conditions for the Existence of a Conjugate Gradient Method , 1984 .

[27]  Anne Greenbaum,et al.  Any Nonincreasing Convergence Curve is Possible for GMRES , 1996, SIAM J. Matrix Anal. Appl..

[28]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[29]  Günther Nürnberger,et al.  Numerical Methods of Approximation Theory. , 1982 .

[30]  Richard S. Varga,et al.  A study of semiiterative methods for nonsymmetric systems of linear equations , 1985 .

[31]  Ronald B. Morgan,et al.  A Restarted GMRES Method Augmented with Eigenvectors , 1995, SIAM J. Matrix Anal. Appl..

[32]  Wayne Joubert,et al.  A Robust GMRES-Based Adaptive Polynomial Preconditioning Algorithm for Nonsymmetric Linear Systems , 1994, SIAM J. Sci. Comput..

[33]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.