Phase competition in trisected superconducting dome

A detailed phenomenology of low energy excitations is a crucial starting point for microscopic understanding of complex materials, such as the cuprate high-temperature superconductors. Because of its unique momentum-space discrimination, angle-resolved photoemission spectroscopy (ARPES) is ideally suited for this task in the cuprates, where emergent phases, particularly superconductivity and the pseudogap, have anisotropic gap structure in momentum space. We present a comprehensive doping- and temperature-dependence ARPES study of spectral gaps in Bi2Sr2CaCu2O8+δ, covering much of the superconducting portion of the phase diagram. In the ground state, abrupt changes in near-nodal gap phenomenology give spectroscopic evidence for two potential quantum critical points, p = 0.19 for the pseudogap phase and p = 0.076 for another competing phase. Temperature dependence reveals that the pseudogap is not static below Tc and exists p > 0.19 at higher temperatures. Our data imply a revised phase diagram that reconciles conflicting reports about the endpoint of the pseudogap in the literature, incorporates phase competition between the superconducting gap and pseudogap, and highlights distinct physics at the edge of the superconducting dome.

[1]  G. M. De Luca,et al.  Long-Range Incommensurate Charge Fluctuations in (Y,Nd)Ba2Cu3O6+x , 2012, Science.

[2]  X. Chaud,et al.  Magnetic order in the pseudogap phase of high-Tc superconductors. , 2005, Physical review letters.

[3]  Min Gyu Kim,et al.  Anomalous suppression of the orthorhombic lattice distortion in superconducting Ba(Fe1-xCox)2As2 single crystals. , 2009, Physical review letters.

[4]  J. Loram,et al.  The doping dependence of T* – what is the real high-Tc phase diagram? , 2000, cond-mat/0005063.

[5]  Shen,et al.  Anomalously large gap anisotropy in the a-b plane of Bi2Sr2CaCu2O8+ delta. , 2018, Physical review letters.

[6]  S. Chakravarty Quantum oscillations and key theoretical issues in high temperature superconductors from the perspective of density waves , 2011 .

[7]  A. Pasupathy,et al.  Extending Universal Nodal Excitations Optimizes Superconductivity in Bi2Sr2CaCu2O8+δ , 2009, Science.

[8]  L. Balicas,et al.  Lifshitz critical point in the cuprate superconductor YBa2Cu3Oy from high-field Hall effect measurements , 2010, 1009.2078.

[9]  Shen,et al.  Unconventional electronic structure evolution with hole doping in Bi2Sr2CaCu2O8+ delta : Angle-resolved photoemission results. , 1996, Physical review letters.

[10]  Fully gapped single-particle excitations in lightly doped cuprates , 2003, cond-mat/0312270.

[11]  Imaging the two gaps of the high-temperature superconductor Bi 2 Sr 2 CuO 6+ x , 2007, 0705.1731.

[12]  Jhinhwan Lee,et al.  Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states , 2010, Nature.

[13]  M. Randeria,et al.  Electronic phase diagram of high-temperature copper oxide superconductors , 2011, Proceedings of the National Academy of Sciences.

[14]  K. Gray,et al.  Absence of pseudogap in heavily overdoped Bi2Sr2CaCu2O8+δ from tunneling spectroscopy of break junctions , 2002 .

[15]  Destruction of the Fermi surface in underdoped high-Tc superconductors , 1997, Nature.

[16]  M. Li,et al.  The phase diagram for coexisting d-wave superconductivity and charge-density waves: cuprates and beyond , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  D. A. Bonn,et al.  Metal-insulator quantum critical point beneath the high Tc superconducting dome , 2009, Proceedings of the National Academy of Sciences.

[18]  Signature of superfluid density in the single-particle excitation spectrum of Bi2Sr2CaCu2O8+δ , 2000, cond-mat/0009306.

[19]  Y. Tokunaga,et al.  Pseudogap behavior in single-crystal Bi 2 Sr 2 CaCu 2 O 8+δ probed by Cu NMR , 1998 .

[20]  D. Santiago,et al.  Spin Density Wave and D-Wave Superconducting Order Parameter , 2004 .

[21]  N. Ong,et al.  Diamagnetism and Cooper pairing above T c in cuprates , 2009, 0906.1823.

[22]  Bernhard,et al.  Generic superconducting phase behavior in high-Tc cuprates: Tc variation with hole concentration in YBa2Cu3O7- delta. , 1995, Physical review. B, Condensed matter.

[23]  N. Ong,et al.  Nernst effect in high-Tc superconductors , 2005, cond-mat/0510470.

[24]  J. Cooper,et al.  Effect of hole doping on the London penetration depth in Bi 2.15 Sr 1.85 CaCu 2 O 8+δ and Bi 2.1 Sr 1.9 Ca 0.85 Y 0.15 Cu 2 O 8+δ , 2009 .

[25]  C. H. Park,et al.  Excitation Gap in the Normal State of Underdoped Bi2Sr2CaCu2O8+δ , 1996, Science.

[26]  Z. Hussain,et al.  Universal versus material-dependent two-gap behaviors of the high-Tc cuprate superconductors: angle-resolved photoemission study of La2-xSrxCuO4. , 2008, Physical review letters.

[27]  B. Keimer,et al.  Electronic Liquid Crystal State in the High-Temperature Superconductor YBa2Cu3O6.45 , 2008, Science.

[28]  A. Fujimori,et al.  Doping evolution of the electronic structure in the single-layer cuprate Bi 2 Sr 2 − x La x Cu O 6 + δ : Comparison with other single-layer cuprates , 2008, 0801.0782.

[29]  D. A. Bonn,et al.  Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67 , 2012 .

[30]  A momentum-dependent perspective on quasiparticle interference in Bi2Sr2CaCu2O8+|[delta]| , 2009, 0909.0762.

[31]  M. Li,et al.  Competition of Superconductivity and Charge Density Waves in Cuprates: Recent Evidence and Interpretation , 2010 .

[32]  Norman,et al.  Angle-resolved photoemission spectroscopy study of the superconducting gap anisotropy in Bi2Sr2CaCu2O8+x. , 1996, Physical review. B, Condensed matter.

[33]  Z. Hussain,et al.  ARPES studies of cuprate Fermiology: superconductivity, pseudogap and quasiparticle dynamics , 2010, 1009.0274.

[34]  M. Randeria,et al.  Observation of a d -wave nodal liquid in highly underdoped Bi 2 Sr 2 CaCu 2 O 8+ δ , 2009, 0910.1648.

[35]  M. R. Norman,et al.  Phenomenology of the low-energy spectral function in high-T c superconductors , 1998 .

[36]  B. Keimer,et al.  Neutron scattering study of the magnetic phase diagram of underdoped YBa2Cu3O6+x , 2010, 1008.4298.

[37]  M. Shi,et al.  Evolution from a Nodeless Gap to d(x2-y2)-Wave in Underdoped La2-xSrxCuO4 , 2012, 1207.3486.

[38]  T. Kondo,et al.  Disentangling Cooper-pair formation above the transition temperature from the pseudogap state in the cuprates , 2010, 1005.5309.

[39]  N. Momono,et al.  Strong pairing interactions in the underdoped region of Bi2Sr2CaCu2O8+σ , 1997 .

[40]  M. Randeria,et al.  Electronic Spectra and Their Relation to the ( π,π) Collective Mode in High- Tc Superconductors , 1999, cond-mat/9906335.

[41]  A. J. Arko,et al.  Anomalously large gap anisotropy in the a - b plane of Bi 2 Sr 2 CaCu 2 O 8 + δ , 1993 .

[42]  Fluctuating stripes at the onset of the pseudogap in the high-Tc superconductor Bi2Sr2CaCu2O8+x , 2010, Nature.

[43]  Yoichi Ando,et al.  Visualizing pair formation on the atomic scale in the high-Tc superconductor Bi2Sr2CaCu2O8+δ , 2007, Nature.

[44]  T. Kondo,et al.  Competition between the pseudogap and superconductivity in the high-Tc copper oxides , 2009, Nature.

[45]  M. Randeria,et al.  Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors , 1996, Nature.

[46]  J. Orenstein,et al.  From a Single-Band Metal to a High-Temperature Superconductor via Two Thermal Phase Transitions , 2011, Science.

[47]  M. Randeria,et al.  Evolution of the pseudogap from Fermi arcs to the nodal liquid , 2006 .

[48]  D. Johrendt,et al.  Microscopic coexistence of superconductivity and magnetism in Ba(1-x)K(x)Fe2As2. , 2011, Physical review letters.

[49]  M. Dressel,et al.  Microwave measurements of the in-plane and c-axis conductivity in HgBa2CuO4+δ: Discriminating between superconducting fluctuations and pseudogap effects , 2009 .

[50]  Distinct Fermi-Momentum-Dependent Energy Gaps in Deeply Underdoped Bi2212 , 2006, Science.

[51]  S. Sachdev,et al.  Quantum Critical Point Shifts under Superconductivity: the Pnictides and the Cuprates , 2010, 1005.3312.

[52]  T. Claeson,et al.  Evidence for coexistence of the superconducting gap and the pseudogap in Bi-2212 from intrinsic tunneling spectroscopy. , 2000, Physical review letters.

[53]  K. Tanaka,et al.  A momentum-dependent perspective on quasiparticle interference in Bi 2 Sr 2 CaCu 2 O , 2009 .

[54]  Z. Hussain,et al.  Abrupt onset of a second energy gap at the superconducting transition of underdoped Bi2212 , 2007, Nature.