Encryption of digital hologram of 3-D object by virtual optics.

We present a simple technique to encrypt a digital hologram of a three-dimensional (3-D) object into a stationary white noise by use of virtual optics and then to decrypt it digitally. In this technique the digital hologram is encrypted by our attaching a computer-generated random phase key to it and then forcing them to Fresnel propagate to an arbitrary plane with an illuminating plane wave of a given wavelength. It is shown in experiments that the proposed system is robust to blind decryptions without knowing the correct propagation distance, wavelength, and phase key used in the encryption. Signal-to-noise ratio (SNR) and mean-square-error (MSE) of the reconstructed 3-D object are calculated for various decryption distances and wavelengths, and partial use of the correct phase key.